Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning

Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2015-11, Vol.228, p.66-94
Hauptverfasser: Derrac, Joaquín, Schockaert, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 66
container_title Artificial intelligence
container_volume 228
creator Derrac, Joaquín
Schockaert, Steven
description Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.
doi_str_mv 10.1016/j.artint.2015.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744685070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370215001034</els_id><sourcerecordid>1744685070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</originalsourceid><addsrcrecordid>eNp9kM1L9DAQh4MouH78Bx5yfC-tk7SbNu9BEPELBC96DrPpVLN0k5qkgv-9kfXsaRjmNw8zD2MXAmoBQl1ua4zZ-VxLEOsauhpAHrCV6DtZdVqKQ7YCgLZqOpDH7CSlbWkbrcWK4aMfFuv8G0-0Q5-d5ZEmzC74xMcYdtwGb2nOC048zWgp_efXfMCM1RDdJ3mO8xwD2neeA58nXJLbTFQomIIv4DN2NOKU6Py3nrLXu9uXm4fq6fn-8eb6qbJNo3OFqtdrbK3cSGiEHmiwo9KqFS0pRNERKlAopRoHrdakERvq-97SBqgv4-aU_dtzyzUfC6Vsdi5Zmib0FJZkRNe2ql9DByXa7qM2hpQijWaObofxywgwP0bN1uyNmh-jBjpTjJa1q_0alTc-HUWTrKNiZ3CRbDZDcH8DvgFN8oL2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744685070</pqid></control><display><type>article</type><title>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Derrac, Joaquín ; Schockaert, Steven</creator><creatorcontrib>Derrac, Joaquín ; Schockaert, Steven</creatorcontrib><description>Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2015.07.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Classification ; Classifiers ; Commonsense reasoning ; Conceptual spaces ; Dimensionality reduction ; Expert systems ; Interpolation ; Knowledge bases (artificial intelligence) ; Qualitative spatial relations ; Reasoning ; Semantics ; Texts</subject><ispartof>Artificial intelligence, 2015-11, Vol.228, p.66-94</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</citedby><cites>FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2015.07.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Schockaert, Steven</creatorcontrib><title>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</title><title>Artificial intelligence</title><description>Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Commonsense reasoning</subject><subject>Conceptual spaces</subject><subject>Dimensionality reduction</subject><subject>Expert systems</subject><subject>Interpolation</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Qualitative spatial relations</subject><subject>Reasoning</subject><subject>Semantics</subject><subject>Texts</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1L9DAQh4MouH78Bx5yfC-tk7SbNu9BEPELBC96DrPpVLN0k5qkgv-9kfXsaRjmNw8zD2MXAmoBQl1ua4zZ-VxLEOsauhpAHrCV6DtZdVqKQ7YCgLZqOpDH7CSlbWkbrcWK4aMfFuv8G0-0Q5-d5ZEmzC74xMcYdtwGb2nOC048zWgp_efXfMCM1RDdJ3mO8xwD2neeA58nXJLbTFQomIIv4DN2NOKU6Py3nrLXu9uXm4fq6fn-8eb6qbJNo3OFqtdrbK3cSGiEHmiwo9KqFS0pRNERKlAopRoHrdakERvq-97SBqgv4-aU_dtzyzUfC6Vsdi5Zmib0FJZkRNe2ql9DByXa7qM2hpQijWaObofxywgwP0bN1uyNmh-jBjpTjJa1q_0alTc-HUWTrKNiZ3CRbDZDcH8DvgFN8oL2</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Derrac, Joaquín</creator><creator>Schockaert, Steven</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</title><author>Derrac, Joaquín ; Schockaert, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Commonsense reasoning</topic><topic>Conceptual spaces</topic><topic>Dimensionality reduction</topic><topic>Expert systems</topic><topic>Interpolation</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Qualitative spatial relations</topic><topic>Reasoning</topic><topic>Semantics</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Schockaert, Steven</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrac, Joaquín</au><au>Schockaert, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</atitle><jtitle>Artificial intelligence</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>228</volume><spage>66</spage><epage>94</epage><pages>66-94</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2015.07.002</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2015-11, Vol.228, p.66-94
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_1744685070
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Classification
Classifiers
Commonsense reasoning
Conceptual spaces
Dimensionality reduction
Expert systems
Interpolation
Knowledge bases (artificial intelligence)
Qualitative spatial relations
Reasoning
Semantics
Texts
title Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inducing%20semantic%20relations%20from%20conceptual%20spaces:%20A%20data-driven%20approach%20to%20plausible%20reasoning&rft.jtitle=Artificial%20intelligence&rft.au=Derrac,%20Joaqu%C3%ADn&rft.date=2015-11-01&rft.volume=228&rft.spage=66&rft.epage=94&rft.pages=66-94&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2015.07.002&rft_dat=%3Cproquest_cross%3E1744685070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744685070&rft_id=info:pmid/&rft_els_id=S0004370215001034&rfr_iscdi=true