Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning
Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and ent...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2015-11, Vol.228, p.66-94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 66 |
container_title | Artificial intelligence |
container_volume | 228 |
creator | Derrac, Joaquín Schockaert, Steven |
description | Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations. |
doi_str_mv | 10.1016/j.artint.2015.07.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744685070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370215001034</els_id><sourcerecordid>1744685070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</originalsourceid><addsrcrecordid>eNp9kM1L9DAQh4MouH78Bx5yfC-tk7SbNu9BEPELBC96DrPpVLN0k5qkgv-9kfXsaRjmNw8zD2MXAmoBQl1ua4zZ-VxLEOsauhpAHrCV6DtZdVqKQ7YCgLZqOpDH7CSlbWkbrcWK4aMfFuv8G0-0Q5-d5ZEmzC74xMcYdtwGb2nOC048zWgp_efXfMCM1RDdJ3mO8xwD2neeA58nXJLbTFQomIIv4DN2NOKU6Py3nrLXu9uXm4fq6fn-8eb6qbJNo3OFqtdrbK3cSGiEHmiwo9KqFS0pRNERKlAopRoHrdakERvq-97SBqgv4-aU_dtzyzUfC6Vsdi5Zmib0FJZkRNe2ql9DByXa7qM2hpQijWaObofxywgwP0bN1uyNmh-jBjpTjJa1q_0alTc-HUWTrKNiZ3CRbDZDcH8DvgFN8oL2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744685070</pqid></control><display><type>article</type><title>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Derrac, Joaquín ; Schockaert, Steven</creator><creatorcontrib>Derrac, Joaquín ; Schockaert, Steven</creatorcontrib><description>Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2015.07.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Classification ; Classifiers ; Commonsense reasoning ; Conceptual spaces ; Dimensionality reduction ; Expert systems ; Interpolation ; Knowledge bases (artificial intelligence) ; Qualitative spatial relations ; Reasoning ; Semantics ; Texts</subject><ispartof>Artificial intelligence, 2015-11, Vol.228, p.66-94</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</citedby><cites>FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2015.07.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Schockaert, Steven</creatorcontrib><title>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</title><title>Artificial intelligence</title><description>Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Commonsense reasoning</subject><subject>Conceptual spaces</subject><subject>Dimensionality reduction</subject><subject>Expert systems</subject><subject>Interpolation</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Qualitative spatial relations</subject><subject>Reasoning</subject><subject>Semantics</subject><subject>Texts</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1L9DAQh4MouH78Bx5yfC-tk7SbNu9BEPELBC96DrPpVLN0k5qkgv-9kfXsaRjmNw8zD2MXAmoBQl1ua4zZ-VxLEOsauhpAHrCV6DtZdVqKQ7YCgLZqOpDH7CSlbWkbrcWK4aMfFuv8G0-0Q5-d5ZEmzC74xMcYdtwGb2nOC048zWgp_efXfMCM1RDdJ3mO8xwD2neeA58nXJLbTFQomIIv4DN2NOKU6Py3nrLXu9uXm4fq6fn-8eb6qbJNo3OFqtdrbK3cSGiEHmiwo9KqFS0pRNERKlAopRoHrdakERvq-97SBqgv4-aU_dtzyzUfC6Vsdi5Zmib0FJZkRNe2ql9DByXa7qM2hpQijWaObofxywgwP0bN1uyNmh-jBjpTjJa1q_0alTc-HUWTrKNiZ3CRbDZDcH8DvgFN8oL2</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Derrac, Joaquín</creator><creator>Schockaert, Steven</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</title><author>Derrac, Joaquín ; Schockaert, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-a6895a4c2b20319dedcf696414e6aa17ea606a226fd965e9aa3e888ceb0e817e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Commonsense reasoning</topic><topic>Conceptual spaces</topic><topic>Dimensionality reduction</topic><topic>Expert systems</topic><topic>Interpolation</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Qualitative spatial relations</topic><topic>Reasoning</topic><topic>Semantics</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Schockaert, Steven</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrac, Joaquín</au><au>Schockaert, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning</atitle><jtitle>Artificial intelligence</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>228</volume><spage>66</spage><epage>94</epage><pages>66-94</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Commonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as ‘more fruity than’ (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2015.07.002</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2015-11, Vol.228, p.66-94 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744685070 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Classification Classifiers Commonsense reasoning Conceptual spaces Dimensionality reduction Expert systems Interpolation Knowledge bases (artificial intelligence) Qualitative spatial relations Reasoning Semantics Texts |
title | Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inducing%20semantic%20relations%20from%20conceptual%20spaces:%20A%20data-driven%20approach%20to%20plausible%20reasoning&rft.jtitle=Artificial%20intelligence&rft.au=Derrac,%20Joaqu%C3%ADn&rft.date=2015-11-01&rft.volume=228&rft.spage=66&rft.epage=94&rft.pages=66-94&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2015.07.002&rft_dat=%3Cproquest_cross%3E1744685070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744685070&rft_id=info:pmid/&rft_els_id=S0004370215001034&rfr_iscdi=true |