Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells

In this study we present the investigation of Cu2ZnSnSe4 (CZTSe) absorber layers formed using electrochemical co-deposition in the stirred citrate solution. Two different Mo back contacts were tested to evaluate the formation of MoSe2 during selenization of electrodeposited Cu–Zn–Sn (CZT) precursor....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2015-08, Vol.589, p.165-172
Hauptverfasser: Kondrotas, R., Juškėnas, R., Naujokaitis, A., Niaura, G., Mockus, Z., Kanapeckaitė, S., Čechavičius, B., Juškevičius, K., Saucedo, E., Sánchez, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue
container_start_page 165
container_title Thin solid films
container_volume 589
creator Kondrotas, R.
Juškėnas, R.
Naujokaitis, A.
Niaura, G.
Mockus, Z.
Kanapeckaitė, S.
Čechavičius, B.
Juškevičius, K.
Saucedo, E.
Sánchez, Y.
description In this study we present the investigation of Cu2ZnSnSe4 (CZTSe) absorber layers formed using electrochemical co-deposition in the stirred citrate solution. Two different Mo back contacts were tested to evaluate the formation of MoSe2 during selenization of electrodeposited Cu–Zn–Sn (CZT) precursor. Cleaved and focused ion beam made cross-sections of CZT/Mo and CZTSe/MoSe2/Mo layers and surface morphology of CZTSe were studied by scanning microscopy. The chemical composition was determined by x-ray energy dispersive and fluorescence spectroscopy, whereas phase composition was examined by x-ray diffraction and Raman spectroscopy. The formation of MoSe2 strongly depended on the microstructure of Mo and annealing conditions. Possible reasons for different selenization of Mo back contacts used were discussed. Photoluminescence (PL) measurements revealed that characteristics of CZTSe main PL peak were compositional dependent. The highest CZTSe solar cell efficiency obtained was 2.64%. •The thickness of MoSe2 of home-made Mo substrate was constant.•Center of photoluminescence peak was dependent on Cu2ZnSnSe4 composition.•Poor quality of Mo/Cu2ZnSnSe4 interface resulted in low shunt resistance.
doi_str_mv 10.1016/j.tsf.2015.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744684429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609015005465</els_id><sourcerecordid>1744684429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-34c02a184c786c7d0b79aed0bc9c93604384a578948928469f659756d3bc89b73</originalsourceid><addsrcrecordid>eNp9UE1rGzEQFaGFuGl-QG57zGXd0YdXEjkV0ySGQA9uL7mItXa2lVlLrmY30JzyH_IP80uqxTkX5oMZ3hvmPcauOCw58ObLfjlSvxTAV0sowcUZW3CjbS205B_YAkBB3YCFc_aJaA9QIEIu2LSJT0hj-NWOIcUq9RXhgDE8n-ZjTh6J5n1Z-zGnDo-JwohdtZ7eXl4fYynbGYh-ypRy1ZdcT-IxbuMWVTX-DrHuw3CoKA1trjwOA31mH_t2ILx87xfs5-23H-v7-uH73Wb99aH2UsJYS-VBtNwor03jdQc7bVsszVtvZQNKGtWutLHKWGFUY_tmZfWq6eTOG7vT8oJdn-4WHX-motMdAs0ftBHTRI5rpRqjlLAFyk9QnxNRxt4dczi0-a_j4GaL3d4Vi91ssYMSXBTOzYmDRcNTwOzIB4weu1DsGF2Xwn_Y_wAe8obx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744684429</pqid></control><display><type>article</type><title>Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kondrotas, R. ; Juškėnas, R. ; Naujokaitis, A. ; Niaura, G. ; Mockus, Z. ; Kanapeckaitė, S. ; Čechavičius, B. ; Juškevičius, K. ; Saucedo, E. ; Sánchez, Y.</creator><creatorcontrib>Kondrotas, R. ; Juškėnas, R. ; Naujokaitis, A. ; Niaura, G. ; Mockus, Z. ; Kanapeckaitė, S. ; Čechavičius, B. ; Juškevičius, K. ; Saucedo, E. ; Sánchez, Y.</creatorcontrib><description>In this study we present the investigation of Cu2ZnSnSe4 (CZTSe) absorber layers formed using electrochemical co-deposition in the stirred citrate solution. Two different Mo back contacts were tested to evaluate the formation of MoSe2 during selenization of electrodeposited Cu–Zn–Sn (CZT) precursor. Cleaved and focused ion beam made cross-sections of CZT/Mo and CZTSe/MoSe2/Mo layers and surface morphology of CZTSe were studied by scanning microscopy. The chemical composition was determined by x-ray energy dispersive and fluorescence spectroscopy, whereas phase composition was examined by x-ray diffraction and Raman spectroscopy. The formation of MoSe2 strongly depended on the microstructure of Mo and annealing conditions. Possible reasons for different selenization of Mo back contacts used were discussed. Photoluminescence (PL) measurements revealed that characteristics of CZTSe main PL peak were compositional dependent. The highest CZTSe solar cell efficiency obtained was 2.64%. •The thickness of MoSe2 of home-made Mo substrate was constant.•Center of photoluminescence peak was dependent on Cu2ZnSnSe4 composition.•Poor quality of Mo/Cu2ZnSnSe4 interface resulted in low shunt resistance.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2015.05.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annealing ; ANNEALING PROCESSES ; Copper ; COPPER SULFIDE ; Copper zinc tin selenide ; CZT ; ELECTRODEPOSITION ; ELECTRODES ; Formations ; Molybdenum substrate ; Photovoltaic cells ; Precursors ; Selenization ; Solar cells ; THIN FILMS ; X RAYS</subject><ispartof>Thin solid films, 2015-08, Vol.589, p.165-172</ispartof><rights>2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-34c02a184c786c7d0b79aed0bc9c93604384a578948928469f659756d3bc89b73</citedby><cites>FETCH-LOGICAL-c330t-34c02a184c786c7d0b79aed0bc9c93604384a578948928469f659756d3bc89b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2015.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kondrotas, R.</creatorcontrib><creatorcontrib>Juškėnas, R.</creatorcontrib><creatorcontrib>Naujokaitis, A.</creatorcontrib><creatorcontrib>Niaura, G.</creatorcontrib><creatorcontrib>Mockus, Z.</creatorcontrib><creatorcontrib>Kanapeckaitė, S.</creatorcontrib><creatorcontrib>Čechavičius, B.</creatorcontrib><creatorcontrib>Juškevičius, K.</creatorcontrib><creatorcontrib>Saucedo, E.</creatorcontrib><creatorcontrib>Sánchez, Y.</creatorcontrib><title>Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells</title><title>Thin solid films</title><description>In this study we present the investigation of Cu2ZnSnSe4 (CZTSe) absorber layers formed using electrochemical co-deposition in the stirred citrate solution. Two different Mo back contacts were tested to evaluate the formation of MoSe2 during selenization of electrodeposited Cu–Zn–Sn (CZT) precursor. Cleaved and focused ion beam made cross-sections of CZT/Mo and CZTSe/MoSe2/Mo layers and surface morphology of CZTSe were studied by scanning microscopy. The chemical composition was determined by x-ray energy dispersive and fluorescence spectroscopy, whereas phase composition was examined by x-ray diffraction and Raman spectroscopy. The formation of MoSe2 strongly depended on the microstructure of Mo and annealing conditions. Possible reasons for different selenization of Mo back contacts used were discussed. Photoluminescence (PL) measurements revealed that characteristics of CZTSe main PL peak were compositional dependent. The highest CZTSe solar cell efficiency obtained was 2.64%. •The thickness of MoSe2 of home-made Mo substrate was constant.•Center of photoluminescence peak was dependent on Cu2ZnSnSe4 composition.•Poor quality of Mo/Cu2ZnSnSe4 interface resulted in low shunt resistance.</description><subject>Annealing</subject><subject>ANNEALING PROCESSES</subject><subject>Copper</subject><subject>COPPER SULFIDE</subject><subject>Copper zinc tin selenide</subject><subject>CZT</subject><subject>ELECTRODEPOSITION</subject><subject>ELECTRODES</subject><subject>Formations</subject><subject>Molybdenum substrate</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Selenization</subject><subject>Solar cells</subject><subject>THIN FILMS</subject><subject>X RAYS</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1rGzEQFaGFuGl-QG57zGXd0YdXEjkV0ySGQA9uL7mItXa2lVlLrmY30JzyH_IP80uqxTkX5oMZ3hvmPcauOCw58ObLfjlSvxTAV0sowcUZW3CjbS205B_YAkBB3YCFc_aJaA9QIEIu2LSJT0hj-NWOIcUq9RXhgDE8n-ZjTh6J5n1Z-zGnDo-JwohdtZ7eXl4fYynbGYh-ypRy1ZdcT-IxbuMWVTX-DrHuw3CoKA1trjwOA31mH_t2ILx87xfs5-23H-v7-uH73Wb99aH2UsJYS-VBtNwor03jdQc7bVsszVtvZQNKGtWutLHKWGFUY_tmZfWq6eTOG7vT8oJdn-4WHX-motMdAs0ftBHTRI5rpRqjlLAFyk9QnxNRxt4dczi0-a_j4GaL3d4Vi91ssYMSXBTOzYmDRcNTwOzIB4weu1DsGF2Xwn_Y_wAe8obx</recordid><startdate>20150831</startdate><enddate>20150831</enddate><creator>Kondrotas, R.</creator><creator>Juškėnas, R.</creator><creator>Naujokaitis, A.</creator><creator>Niaura, G.</creator><creator>Mockus, Z.</creator><creator>Kanapeckaitė, S.</creator><creator>Čechavičius, B.</creator><creator>Juškevičius, K.</creator><creator>Saucedo, E.</creator><creator>Sánchez, Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150831</creationdate><title>Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells</title><author>Kondrotas, R. ; Juškėnas, R. ; Naujokaitis, A. ; Niaura, G. ; Mockus, Z. ; Kanapeckaitė, S. ; Čechavičius, B. ; Juškevičius, K. ; Saucedo, E. ; Sánchez, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-34c02a184c786c7d0b79aed0bc9c93604384a578948928469f659756d3bc89b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annealing</topic><topic>ANNEALING PROCESSES</topic><topic>Copper</topic><topic>COPPER SULFIDE</topic><topic>Copper zinc tin selenide</topic><topic>CZT</topic><topic>ELECTRODEPOSITION</topic><topic>ELECTRODES</topic><topic>Formations</topic><topic>Molybdenum substrate</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Selenization</topic><topic>Solar cells</topic><topic>THIN FILMS</topic><topic>X RAYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondrotas, R.</creatorcontrib><creatorcontrib>Juškėnas, R.</creatorcontrib><creatorcontrib>Naujokaitis, A.</creatorcontrib><creatorcontrib>Niaura, G.</creatorcontrib><creatorcontrib>Mockus, Z.</creatorcontrib><creatorcontrib>Kanapeckaitė, S.</creatorcontrib><creatorcontrib>Čechavičius, B.</creatorcontrib><creatorcontrib>Juškevičius, K.</creatorcontrib><creatorcontrib>Saucedo, E.</creatorcontrib><creatorcontrib>Sánchez, Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondrotas, R.</au><au>Juškėnas, R.</au><au>Naujokaitis, A.</au><au>Niaura, G.</au><au>Mockus, Z.</au><au>Kanapeckaitė, S.</au><au>Čechavičius, B.</au><au>Juškevičius, K.</au><au>Saucedo, E.</au><au>Sánchez, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells</atitle><jtitle>Thin solid films</jtitle><date>2015-08-31</date><risdate>2015</risdate><volume>589</volume><spage>165</spage><epage>172</epage><pages>165-172</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>In this study we present the investigation of Cu2ZnSnSe4 (CZTSe) absorber layers formed using electrochemical co-deposition in the stirred citrate solution. Two different Mo back contacts were tested to evaluate the formation of MoSe2 during selenization of electrodeposited Cu–Zn–Sn (CZT) precursor. Cleaved and focused ion beam made cross-sections of CZT/Mo and CZTSe/MoSe2/Mo layers and surface morphology of CZTSe were studied by scanning microscopy. The chemical composition was determined by x-ray energy dispersive and fluorescence spectroscopy, whereas phase composition was examined by x-ray diffraction and Raman spectroscopy. The formation of MoSe2 strongly depended on the microstructure of Mo and annealing conditions. Possible reasons for different selenization of Mo back contacts used were discussed. Photoluminescence (PL) measurements revealed that characteristics of CZTSe main PL peak were compositional dependent. The highest CZTSe solar cell efficiency obtained was 2.64%. •The thickness of MoSe2 of home-made Mo substrate was constant.•Center of photoluminescence peak was dependent on Cu2ZnSnSe4 composition.•Poor quality of Mo/Cu2ZnSnSe4 interface resulted in low shunt resistance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2015.05.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2015-08, Vol.589, p.165-172
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1744684429
source Elsevier ScienceDirect Journals Complete
subjects Annealing
ANNEALING PROCESSES
Copper
COPPER SULFIDE
Copper zinc tin selenide
CZT
ELECTRODEPOSITION
ELECTRODES
Formations
Molybdenum substrate
Photovoltaic cells
Precursors
Selenization
Solar cells
THIN FILMS
X RAYS
title Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20selenization%20process%20of%20electrodeposited%20Cu%E2%80%93Zn%E2%80%93Sn%20precursor%20for%20Cu2ZnSnSe4%20thin-film%20solar%20cells&rft.jtitle=Thin%20solid%20films&rft.au=Kondrotas,%20R.&rft.date=2015-08-31&rft.volume=589&rft.spage=165&rft.epage=172&rft.pages=165-172&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/j.tsf.2015.05.012&rft_dat=%3Cproquest_cross%3E1744684429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744684429&rft_id=info:pmid/&rft_els_id=S0040609015005465&rfr_iscdi=true