A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer

The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2015-09, Vol.38 (9), p.1565-1573
Hauptverfasser: Jiang, Fan, Wang, Yijun, Xiang, Jianhua, Liu, Zhenzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1573
container_issue 9
container_start_page 1565
container_title Chemical engineering & technology
container_volume 38
creator Jiang, Fan
Wang, Yijun
Xiang, Jianhua
Liu, Zhenzhang
description The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems. The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.
doi_str_mv 10.1002/ceat.201400255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744680694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744680694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFa3rmfpJnUm80qWtW8oSrEi6GKYJjc4mpczidp_b2qluHN1OfB9h8tB6JKSASUkvE7ANIOQUN4FIY5Qj4qQBpyG4hj1SMxIoASVp-jM-1dCCO1CDz0P8agqagcvUHr7AT-pbUxjq9LkeJq3NsXjbWkKm3h837TpFlcZHruqzqEJpjYv8KKoTdJgU6Z43v2A186UPgN3jk4yk3u4-L199DCdrEfzYHk3W4yGyyDhUonAKCUkRGyjAKJ4s6ExS1ScppSFWcYyKQ1jKgLFBcsikGqTRFyFkvMwjhQlgvXR1b63dtV7C77RhfUJ5LkpoWq9popzGREZ8w4d7NHEVd47yHTtbGHcVlOidyvq3Yr6sGInxHvh0-aw_YfWo8lw_dcN9q71DXwdXOPetFRMCf14O9OzsRqvblZCP7FvHumEhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744680694</pqid></control><display><type>article</type><title>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</title><source>Access via Wiley Online Library</source><creator>Jiang, Fan ; Wang, Yijun ; Xiang, Jianhua ; Liu, Zhenzhang</creator><creatorcontrib>Jiang, Fan ; Wang, Yijun ; Xiang, Jianhua ; Liu, Zhenzhang</creatorcontrib><description>The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems. The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201400255</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Computational fluid dynamics simulation ; Computer simulation ; Droplet-film impact ; Droplets ; Heat transfer ; Impact velocity ; Liquid films ; Liquids ; Mathematical models ; Two-phase flow ; Wall temperature ; Walls</subject><ispartof>Chemical engineering &amp; technology, 2015-09, Vol.38 (9), p.1565-1573</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</citedby><cites>FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201400255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201400255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Xiang, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhenzhang</creatorcontrib><title>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems. The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.</description><subject>Computational fluid dynamics simulation</subject><subject>Computer simulation</subject><subject>Droplet-film impact</subject><subject>Droplets</subject><subject>Heat transfer</subject><subject>Impact velocity</subject><subject>Liquid films</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Two-phase flow</subject><subject>Wall temperature</subject><subject>Walls</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFa3rmfpJnUm80qWtW8oSrEi6GKYJjc4mpczidp_b2qluHN1OfB9h8tB6JKSASUkvE7ANIOQUN4FIY5Qj4qQBpyG4hj1SMxIoASVp-jM-1dCCO1CDz0P8agqagcvUHr7AT-pbUxjq9LkeJq3NsXjbWkKm3h837TpFlcZHruqzqEJpjYv8KKoTdJgU6Z43v2A186UPgN3jk4yk3u4-L199DCdrEfzYHk3W4yGyyDhUonAKCUkRGyjAKJ4s6ExS1ScppSFWcYyKQ1jKgLFBcsikGqTRFyFkvMwjhQlgvXR1b63dtV7C77RhfUJ5LkpoWq9popzGREZ8w4d7NHEVd47yHTtbGHcVlOidyvq3Yr6sGInxHvh0-aw_YfWo8lw_dcN9q71DXwdXOPetFRMCf14O9OzsRqvblZCP7FvHumEhw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Jiang, Fan</creator><creator>Wang, Yijun</creator><creator>Xiang, Jianhua</creator><creator>Liu, Zhenzhang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201509</creationdate><title>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</title><author>Jiang, Fan ; Wang, Yijun ; Xiang, Jianhua ; Liu, Zhenzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics simulation</topic><topic>Computer simulation</topic><topic>Droplet-film impact</topic><topic>Droplets</topic><topic>Heat transfer</topic><topic>Impact velocity</topic><topic>Liquid films</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Two-phase flow</topic><topic>Wall temperature</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Xiang, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhenzhang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Fan</au><au>Wang, Yijun</au><au>Xiang, Jianhua</au><au>Liu, Zhenzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2015-09</date><risdate>2015</risdate><volume>38</volume><issue>9</issue><spage>1565</spage><epage>1573</epage><pages>1565-1573</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems. The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201400255</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2015-09, Vol.38 (9), p.1565-1573
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_1744680694
source Access via Wiley Online Library
subjects Computational fluid dynamics simulation
Computer simulation
Droplet-film impact
Droplets
Heat transfer
Impact velocity
Liquid films
Liquids
Mathematical models
Two-phase flow
Wall temperature
Walls
title A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Computational%20Fluid%20Dynamics%20Study%20of%20Droplet-Film%20Impact%20and%20Heat%20Transfer&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Jiang,%20Fan&rft.date=2015-09&rft.volume=38&rft.issue=9&rft.spage=1565&rft.epage=1573&rft.pages=1565-1573&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201400255&rft_dat=%3Cproquest_cross%3E1744680694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744680694&rft_id=info:pmid/&rfr_iscdi=true