A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer
The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable...
Gespeichert in:
Veröffentlicht in: | Chemical engineering & technology 2015-09, Vol.38 (9), p.1565-1573 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1573 |
---|---|
container_issue | 9 |
container_start_page | 1565 |
container_title | Chemical engineering & technology |
container_volume | 38 |
creator | Jiang, Fan Wang, Yijun Xiang, Jianhua Liu, Zhenzhang |
description | The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems.
The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems. |
doi_str_mv | 10.1002/ceat.201400255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744680694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744680694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFa3rmfpJnUm80qWtW8oSrEi6GKYJjc4mpczidp_b2qluHN1OfB9h8tB6JKSASUkvE7ANIOQUN4FIY5Qj4qQBpyG4hj1SMxIoASVp-jM-1dCCO1CDz0P8agqagcvUHr7AT-pbUxjq9LkeJq3NsXjbWkKm3h837TpFlcZHruqzqEJpjYv8KKoTdJgU6Z43v2A186UPgN3jk4yk3u4-L199DCdrEfzYHk3W4yGyyDhUonAKCUkRGyjAKJ4s6ExS1ScppSFWcYyKQ1jKgLFBcsikGqTRFyFkvMwjhQlgvXR1b63dtV7C77RhfUJ5LkpoWq9popzGREZ8w4d7NHEVd47yHTtbGHcVlOidyvq3Yr6sGInxHvh0-aw_YfWo8lw_dcN9q71DXwdXOPetFRMCf14O9OzsRqvblZCP7FvHumEhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744680694</pqid></control><display><type>article</type><title>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</title><source>Access via Wiley Online Library</source><creator>Jiang, Fan ; Wang, Yijun ; Xiang, Jianhua ; Liu, Zhenzhang</creator><creatorcontrib>Jiang, Fan ; Wang, Yijun ; Xiang, Jianhua ; Liu, Zhenzhang</creatorcontrib><description>The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems.
The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201400255</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Computational fluid dynamics simulation ; Computer simulation ; Droplet-film impact ; Droplets ; Heat transfer ; Impact velocity ; Liquid films ; Liquids ; Mathematical models ; Two-phase flow ; Wall temperature ; Walls</subject><ispartof>Chemical engineering & technology, 2015-09, Vol.38 (9), p.1565-1573</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</citedby><cites>FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201400255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201400255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Xiang, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhenzhang</creatorcontrib><title>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</title><title>Chemical engineering & technology</title><addtitle>Chem. Eng. Technol</addtitle><description>The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems.
The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.</description><subject>Computational fluid dynamics simulation</subject><subject>Computer simulation</subject><subject>Droplet-film impact</subject><subject>Droplets</subject><subject>Heat transfer</subject><subject>Impact velocity</subject><subject>Liquid films</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Two-phase flow</subject><subject>Wall temperature</subject><subject>Walls</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFa3rmfpJnUm80qWtW8oSrEi6GKYJjc4mpczidp_b2qluHN1OfB9h8tB6JKSASUkvE7ANIOQUN4FIY5Qj4qQBpyG4hj1SMxIoASVp-jM-1dCCO1CDz0P8agqagcvUHr7AT-pbUxjq9LkeJq3NsXjbWkKm3h837TpFlcZHruqzqEJpjYv8KKoTdJgU6Z43v2A186UPgN3jk4yk3u4-L199DCdrEfzYHk3W4yGyyDhUonAKCUkRGyjAKJ4s6ExS1ScppSFWcYyKQ1jKgLFBcsikGqTRFyFkvMwjhQlgvXR1b63dtV7C77RhfUJ5LkpoWq9popzGREZ8w4d7NHEVd47yHTtbGHcVlOidyvq3Yr6sGInxHvh0-aw_YfWo8lw_dcN9q71DXwdXOPetFRMCf14O9OzsRqvblZCP7FvHumEhw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Jiang, Fan</creator><creator>Wang, Yijun</creator><creator>Xiang, Jianhua</creator><creator>Liu, Zhenzhang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201509</creationdate><title>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</title><author>Jiang, Fan ; Wang, Yijun ; Xiang, Jianhua ; Liu, Zhenzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4675-a7756e83b7ee89bb193c79dd132ff3f66a3378e7453f8e67bc847264429871053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics simulation</topic><topic>Computer simulation</topic><topic>Droplet-film impact</topic><topic>Droplets</topic><topic>Heat transfer</topic><topic>Impact velocity</topic><topic>Liquid films</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Two-phase flow</topic><topic>Wall temperature</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Xiang, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhenzhang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Fan</au><au>Wang, Yijun</au><au>Xiang, Jianhua</au><au>Liu, Zhenzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer</atitle><jtitle>Chemical engineering & technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2015-09</date><risdate>2015</risdate><volume>38</volume><issue>9</issue><spage>1565</spage><epage>1573</epage><pages>1565-1573</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>The Eulerian multiphase model and continuum surface force (CSF) are employed to simulate the liquid droplet impinging onto a solid wall with a pre‐existing thin film of the same liquid. The numerical results are compared with the experimental data reported in the literature, indicating a reasonable matching. The flow field and splashing behavior of a droplet impinging onto a liquid film are analyzed. The reason for the edge of the crown to eject into secondary drops is found. The splashing behavior can be influenced by the impacting velocity and fluid properties. The effects of impact velocity, droplet diameter, depth of film, liquid property, and droplet and wall temperature on the heat removal are investigated. Numerical results demonstrate that an increase in impact velocity, droplet diameter, film depth, cooling droplet, and wall temperature enhances the dissipated heat. These results can provide a reference for designing spray‐cooling systems.
The impact of a liquid droplet on a hot surface with pre‐existing liquid film is numerically simulated. Effects of wall temperature, thickness of liquid film, droplet diameter, fall velocity, droplet material, and temperature of droplet and wall on the heat transfer are investigated. The results can provide a reference for design, evaluation, and improvement of spray‐cooling systems.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201400255</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 2015-09, Vol.38 (9), p.1565-1573 |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744680694 |
source | Access via Wiley Online Library |
subjects | Computational fluid dynamics simulation Computer simulation Droplet-film impact Droplets Heat transfer Impact velocity Liquid films Liquids Mathematical models Two-phase flow Wall temperature Walls |
title | A Comprehensive Computational Fluid Dynamics Study of Droplet-Film Impact and Heat Transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Computational%20Fluid%20Dynamics%20Study%20of%20Droplet-Film%20Impact%20and%20Heat%20Transfer&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Jiang,%20Fan&rft.date=2015-09&rft.volume=38&rft.issue=9&rft.spage=1565&rft.epage=1573&rft.pages=1565-1573&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201400255&rft_dat=%3Cproquest_cross%3E1744680694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744680694&rft_id=info:pmid/&rfr_iscdi=true |