The NNPDF2.2 parton set

We present a method developed by the NNPDF Collaboration that allows the inclusion of new experimental data into an existing set of parton distribution functions without the need for a complete refit. A Monte Carlo ensemble of PDFs may be updated by assigning each member of the ensemble a unique wei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-01, Vol.368 (1), p.12063-6
Hauptverfasser: Cerutti, F, Hartland, N P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 12063
container_title Journal of physics. Conference series
container_volume 368
creator Cerutti, F
Hartland, N P
description We present a method developed by the NNPDF Collaboration that allows the inclusion of new experimental data into an existing set of parton distribution functions without the need for a complete refit. A Monte Carlo ensemble of PDFs may be updated by assigning each member of the ensemble a unique weight determined by Bayesian inference. The reweighted ensemble therefore represents the probability density of PDFs conditional on both the old and new data. This method is applied to the inclusion of W-lepton asymmetry data into the NNPDF2.1 fit producing a new PDF set, NNPDF2.2.
doi_str_mv 10.1088/1742-6596/368/1/012063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744680388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744680388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-e3bca6bcc82116832f28da662d8af7916915ca08595f8fa2ed0c225ede667cb23</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWKtnb1Lw4mW7mUkzO3uUalUo1UM9hzSbxZZttybbg__elBUR5zIzzGP4eELcgByDZM6hmGBGuqRcUdpyCShJnYjB7-H0z3wuLmLcSKlSFQNxvfzwo8Xi7WGGYxztbeja3Sj67lKc1baJ_uqnD8X77HE5fc7mr08v0_t55hRAl3m1cpZWzjECECuskStLhBXbuiiBStDOStalrrm26CvpELWvPFHhVqiG4q7_uw_t58HHzmzX0fmmsTvfHqJJuSfEUjEn9PYfumkPYZfSGdQFQyGZdKKop1xoYwy-Nvuw3trwZUCao6_jSzRHFSb5MmB6X-ob1BdZ7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578170865</pqid></control><display><type>article</type><title>The NNPDF2.2 parton set</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cerutti, F ; Hartland, N P</creator><creatorcontrib>Cerutti, F ; Hartland, N P</creatorcontrib><description>We present a method developed by the NNPDF Collaboration that allows the inclusion of new experimental data into an existing set of parton distribution functions without the need for a complete refit. A Monte Carlo ensemble of PDFs may be updated by assigning each member of the ensemble a unique weight determined by Bayesian inference. The reweighted ensemble therefore represents the probability density of PDFs conditional on both the old and new data. This method is applied to the inclusion of W-lepton asymmetry data into the NNPDF2.1 fit producing a new PDF set, NNPDF2.2.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/368/1/012063</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymmetry ; Bayesian analysis ; Density ; Distribution functions ; Inclusions ; Leptons ; Monte Carlo methods ; Partons ; Physics ; Probability density functions ; Statistical inference</subject><ispartof>Journal of physics. Conference series, 2012-01, Vol.368 (1), p.12063-6</ispartof><rights>Copyright IOP Publishing Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-e3bca6bcc82116832f28da662d8af7916915ca08595f8fa2ed0c225ede667cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cerutti, F</creatorcontrib><creatorcontrib>Hartland, N P</creatorcontrib><title>The NNPDF2.2 parton set</title><title>Journal of physics. Conference series</title><description>We present a method developed by the NNPDF Collaboration that allows the inclusion of new experimental data into an existing set of parton distribution functions without the need for a complete refit. A Monte Carlo ensemble of PDFs may be updated by assigning each member of the ensemble a unique weight determined by Bayesian inference. The reweighted ensemble therefore represents the probability density of PDFs conditional on both the old and new data. This method is applied to the inclusion of W-lepton asymmetry data into the NNPDF2.1 fit producing a new PDF set, NNPDF2.2.</description><subject>Asymmetry</subject><subject>Bayesian analysis</subject><subject>Density</subject><subject>Distribution functions</subject><subject>Inclusions</subject><subject>Leptons</subject><subject>Monte Carlo methods</subject><subject>Partons</subject><subject>Physics</subject><subject>Probability density functions</subject><subject>Statistical inference</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkEFLAzEQRoMoWKtnb1Lw4mW7mUkzO3uUalUo1UM9hzSbxZZttybbg__elBUR5zIzzGP4eELcgByDZM6hmGBGuqRcUdpyCShJnYjB7-H0z3wuLmLcSKlSFQNxvfzwo8Xi7WGGYxztbeja3Sj67lKc1baJ_uqnD8X77HE5fc7mr08v0_t55hRAl3m1cpZWzjECECuskStLhBXbuiiBStDOStalrrm26CvpELWvPFHhVqiG4q7_uw_t58HHzmzX0fmmsTvfHqJJuSfEUjEn9PYfumkPYZfSGdQFQyGZdKKop1xoYwy-Nvuw3trwZUCao6_jSzRHFSb5MmB6X-ob1BdZ7Q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Cerutti, F</creator><creator>Hartland, N P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20120101</creationdate><title>The NNPDF2.2 parton set</title><author>Cerutti, F ; Hartland, N P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-e3bca6bcc82116832f28da662d8af7916915ca08595f8fa2ed0c225ede667cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymmetry</topic><topic>Bayesian analysis</topic><topic>Density</topic><topic>Distribution functions</topic><topic>Inclusions</topic><topic>Leptons</topic><topic>Monte Carlo methods</topic><topic>Partons</topic><topic>Physics</topic><topic>Probability density functions</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerutti, F</creatorcontrib><creatorcontrib>Hartland, N P</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerutti, F</au><au>Hartland, N P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NNPDF2.2 parton set</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>368</volume><issue>1</issue><spage>12063</spage><epage>6</epage><pages>12063-6</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We present a method developed by the NNPDF Collaboration that allows the inclusion of new experimental data into an existing set of parton distribution functions without the need for a complete refit. A Monte Carlo ensemble of PDFs may be updated by assigning each member of the ensemble a unique weight determined by Bayesian inference. The reweighted ensemble therefore represents the probability density of PDFs conditional on both the old and new data. This method is applied to the inclusion of W-lepton asymmetry data into the NNPDF2.1 fit producing a new PDF set, NNPDF2.2.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/368/1/012063</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2012-01, Vol.368 (1), p.12063-6
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1744680388
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Asymmetry
Bayesian analysis
Density
Distribution functions
Inclusions
Leptons
Monte Carlo methods
Partons
Physics
Probability density functions
Statistical inference
title The NNPDF2.2 parton set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NNPDF2.2%20parton%20set&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Cerutti,%20F&rft.date=2012-01-01&rft.volume=368&rft.issue=1&rft.spage=12063&rft.epage=6&rft.pages=12063-6&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/368/1/012063&rft_dat=%3Cproquest_cross%3E1744680388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578170865&rft_id=info:pmid/&rfr_iscdi=true