Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics

We demonstrate that a video gaming machine containing two consumer graphical cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than 180× in Hartree−Fock energy + gradient calculations. Such performance makes it possible to run large scale Hartree−Fock and Densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2009-10, Vol.5 (10), p.2619-2628
Hauptverfasser: Ufimtsev, Ivan S, Martinez, Todd J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2628
container_issue 10
container_start_page 2619
container_title Journal of chemical theory and computation
container_volume 5
creator Ufimtsev, Ivan S
Martinez, Todd J
description We demonstrate that a video gaming machine containing two consumer graphical cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than 180× in Hartree−Fock energy + gradient calculations. Such performance makes it possible to run large scale Hartree−Fock and Density Functional Theory calculations, which typically require hundreds of traditional processor cores, on a single workstation. Benchmark Born−Oppenheimer molecular dynamics simulations are performed on two molecular systems using the 3-21G basis set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementation can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single desktop computer for these systems.
doi_str_mv 10.1021/ct9003004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744662747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744662747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-7b94c00456ef43813ac9706bea053d939a703c7ba8ace735c2c3fd69ba9c8923</originalsourceid><addsrcrecordid>eNptkMFu1DAQhi1ERUvhwAsgX5CK1N3acWKvj9XSLkitWqRyjibObOsqsYPHOYSX4JXJsmVPnGak-eaT_p-xD1IspSjkhctWCCVE-YqdyKq0C6sL_fqwy9Uxe0v0PDOqLNQbdlxoraQx5oT9_j5CyGPP10_Ye8pp4jHwTYLhyTvo-H2KDol8eOQ_gs-05GrJLwN0U_57vwqYHqfdQ-sxZDrnG4w97jx3Q_a9_wXZx3DOIbT82ifKs9IH54cOid_GDt3YQeJfpgC9d_SOHW2hI3z_Mk_Zw_XVw_rr4uZu8219ebMAJau8MI0t3Ry40rgt1UoqcNYI3SCISrVWWTBCOdPAChwaVbnCqW2rbQPWrWyhTtnZXjuk-HNEyvUc3mHXQcA4Ui1NWWpdmNLM6Oc96lIkSrith-R7SFMtRb2rvz7UP7MfX7Rj02N7IP_1PQOf9gA4qp_jmOYm6T-iP9U3jSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744662747</pqid></control><display><type>article</type><title>Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics</title><source>ACS Publications</source><creator>Ufimtsev, Ivan S ; Martinez, Todd J</creator><creatorcontrib>Ufimtsev, Ivan S ; Martinez, Todd J</creatorcontrib><description>We demonstrate that a video gaming machine containing two consumer graphical cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than 180× in Hartree−Fock energy + gradient calculations. Such performance makes it possible to run large scale Hartree−Fock and Density Functional Theory calculations, which typically require hundreds of traditional processor cores, on a single workstation. Benchmark Born−Oppenheimer molecular dynamics simulations are performed on two molecular systems using the 3-21G basis set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementation can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single desktop computer for these systems.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct9003004</identifier><identifier>PMID: 26631777</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Dynamics</subject><ispartof>Journal of chemical theory and computation, 2009-10, Vol.5 (10), p.2619-2628</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-7b94c00456ef43813ac9706bea053d939a703c7ba8ace735c2c3fd69ba9c8923</citedby><cites>FETCH-LOGICAL-a315t-7b94c00456ef43813ac9706bea053d939a703c7ba8ace735c2c3fd69ba9c8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct9003004$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct9003004$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26631777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ufimtsev, Ivan S</creatorcontrib><creatorcontrib>Martinez, Todd J</creatorcontrib><title>Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We demonstrate that a video gaming machine containing two consumer graphical cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than 180× in Hartree−Fock energy + gradient calculations. Such performance makes it possible to run large scale Hartree−Fock and Density Functional Theory calculations, which typically require hundreds of traditional processor cores, on a single workstation. Benchmark Born−Oppenheimer molecular dynamics simulations are performed on two molecular systems using the 3-21G basis set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementation can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single desktop computer for these systems.</description><subject>Dynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkMFu1DAQhi1ERUvhwAsgX5CK1N3acWKvj9XSLkitWqRyjibObOsqsYPHOYSX4JXJsmVPnGak-eaT_p-xD1IspSjkhctWCCVE-YqdyKq0C6sL_fqwy9Uxe0v0PDOqLNQbdlxoraQx5oT9_j5CyGPP10_Ye8pp4jHwTYLhyTvo-H2KDol8eOQ_gs-05GrJLwN0U_57vwqYHqfdQ-sxZDrnG4w97jx3Q_a9_wXZx3DOIbT82ifKs9IH54cOid_GDt3YQeJfpgC9d_SOHW2hI3z_Mk_Zw_XVw_rr4uZu8219ebMAJau8MI0t3Ry40rgt1UoqcNYI3SCISrVWWTBCOdPAChwaVbnCqW2rbQPWrWyhTtnZXjuk-HNEyvUc3mHXQcA4Ui1NWWpdmNLM6Oc96lIkSrith-R7SFMtRb2rvz7UP7MfX7Rj02N7IP_1PQOf9gA4qp_jmOYm6T-iP9U3jSI</recordid><startdate>20091013</startdate><enddate>20091013</enddate><creator>Ufimtsev, Ivan S</creator><creator>Martinez, Todd J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091013</creationdate><title>Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics</title><author>Ufimtsev, Ivan S ; Martinez, Todd J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-7b94c00456ef43813ac9706bea053d939a703c7ba8ace735c2c3fd69ba9c8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ufimtsev, Ivan S</creatorcontrib><creatorcontrib>Martinez, Todd J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ufimtsev, Ivan S</au><au>Martinez, Todd J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2009-10-13</date><risdate>2009</risdate><volume>5</volume><issue>10</issue><spage>2619</spage><epage>2628</epage><pages>2619-2628</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We demonstrate that a video gaming machine containing two consumer graphical cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than 180× in Hartree−Fock energy + gradient calculations. Such performance makes it possible to run large scale Hartree−Fock and Density Functional Theory calculations, which typically require hundreds of traditional processor cores, on a single workstation. Benchmark Born−Oppenheimer molecular dynamics simulations are performed on two molecular systems using the 3-21G basis set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementation can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single desktop computer for these systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26631777</pmid><doi>10.1021/ct9003004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2009-10, Vol.5 (10), p.2619-2628
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1744662747
source ACS Publications
subjects Dynamics
title Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Chemistry%20on%20Graphical%20Processing%20Units.%203.%20Analytical%20Energy%20Gradients,%20Geometry%20Optimization,%20and%20First%20Principles%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Ufimtsev,%20Ivan%20S&rft.date=2009-10-13&rft.volume=5&rft.issue=10&rft.spage=2619&rft.epage=2628&rft.pages=2619-2628&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct9003004&rft_dat=%3Cproquest_cross%3E1744662747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744662747&rft_id=info:pmid/26631777&rfr_iscdi=true