Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations

We describe one of the first attempts at unrestrained modeling of self-association of α-helices in implicit heterogeneous membrane-mimic media. The computational approach is based on the Monte Carlo conformational search for peptides in dihedral angles space. The membrane is approximated by an effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2005-11, Vol.1 (6), p.1252-1264
Hauptverfasser: Vereshaga, Yana A, Volynsky, Pavel E, Nolde, Dmitry E, Arseniev, Alexander S, Efremov, Roman G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1264
container_issue 6
container_start_page 1252
container_title Journal of chemical theory and computation
container_volume 1
creator Vereshaga, Yana A
Volynsky, Pavel E
Nolde, Dmitry E
Arseniev, Alexander S
Efremov, Roman G
description We describe one of the first attempts at unrestrained modeling of self-association of α-helices in implicit heterogeneous membrane-mimic media. The computational approach is based on the Monte Carlo conformational search for peptides in dihedral angles space. The membrane is approximated by an effective potential. The method is tested in calculations of two hydrophobic segments of human glycophorin A (GpA), known to form membrane-spanning dimers in real lipid bilayers. Our main findings may be summarized as follows. Modeling in vacuo does not adequately describe the behavior of GpA helices, failing to reproduce experimental structural data. The membrane environment stabilizes α-helical conformation of GpA monomers, inducing their transmembrane insertion and facilitating interhelical contacts. The voltage difference across the membrane promotes “head-to-head” orientation of the helices. “Fine-tuning” of the monomers in a complex is shown to be regulated by van der Waals interactions. Detailed exploration of conformational space of the system starting from arbitrary locations of two noninteracting helices reveals only several groups of energetically favorable structures. All of them represent tightly packed transmembrane helical dimers. In overall, they agree reasonably well with mutagenesis data, some of them are close to NMR-derived structures. A possibility of left-handed dimers is discussed. We assume that the observed moderate structural heterogeneity (the existence of several groups of states with close energies) reflects a real equilibrium dynamics of the monomersat least in membrane mimics used in experimental studies of GpA. The elaborated computational approach is universal and may be employed in studies of a wide class of membrane peptides and proteins.
doi_str_mv 10.1021/ct0501250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744661959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744661959</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-49234c5e5488954ee24fd988ec4cf63e77fcf27a9584ba0663be208e9eaeeab33</originalsourceid><addsrcrecordid>eNptkL1OwzAURi0EoqUw8ALICxIMAf8nZkMV0EqtGKBz5Lg3UqokLnYiwcbKa_IkuLR0YrqW7vHRdz-Ezim5oYTRW9sRSSiT5AANqRQ60Yqpw_2bZgN0EsKKEM4F48dowJTiVCk9RIsJ1NU7nrYdeGO7yrUBVy2eQ1N400K4-_78wjMIYbMovWvwovUQOm-qFpZ47uJHPDa-dvilavra_CpO0VFp6gBnuzlCi8eH1_EkmT0_Tcf3s8RwKrtEaMaFlSBFlmkpAJgolzrLwApbKg5pWtqSpUbLTBSGxNAFMJKBBgNgCs5H6GrrXXv31sdYeVMFC3Udo7s-5DQVQimqpY7o9Ra13oXgoczXvmqM_8gpyTct5vsWI3ux0_ZFA8s9-VdbBC63gLEhX7net_HKf0Q_oBN5pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744661959</pqid></control><display><type>article</type><title>Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations</title><source>ACS Publications</source><creator>Vereshaga, Yana A ; Volynsky, Pavel E ; Nolde, Dmitry E ; Arseniev, Alexander S ; Efremov, Roman G</creator><creatorcontrib>Vereshaga, Yana A ; Volynsky, Pavel E ; Nolde, Dmitry E ; Arseniev, Alexander S ; Efremov, Roman G</creatorcontrib><description>We describe one of the first attempts at unrestrained modeling of self-association of α-helices in implicit heterogeneous membrane-mimic media. The computational approach is based on the Monte Carlo conformational search for peptides in dihedral angles space. The membrane is approximated by an effective potential. The method is tested in calculations of two hydrophobic segments of human glycophorin A (GpA), known to form membrane-spanning dimers in real lipid bilayers. Our main findings may be summarized as follows. Modeling in vacuo does not adequately describe the behavior of GpA helices, failing to reproduce experimental structural data. The membrane environment stabilizes α-helical conformation of GpA monomers, inducing their transmembrane insertion and facilitating interhelical contacts. The voltage difference across the membrane promotes “head-to-head” orientation of the helices. “Fine-tuning” of the monomers in a complex is shown to be regulated by van der Waals interactions. Detailed exploration of conformational space of the system starting from arbitrary locations of two noninteracting helices reveals only several groups of energetically favorable structures. All of them represent tightly packed transmembrane helical dimers. In overall, they agree reasonably well with mutagenesis data, some of them are close to NMR-derived structures. A possibility of left-handed dimers is discussed. We assume that the observed moderate structural heterogeneity (the existence of several groups of states with close energies) reflects a real equilibrium dynamics of the monomersat least in membrane mimics used in experimental studies of GpA. The elaborated computational approach is universal and may be employed in studies of a wide class of membrane peptides and proteins.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct0501250</identifier><identifier>PMID: 26631669</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2005-11, Vol.1 (6), p.1252-1264</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-49234c5e5488954ee24fd988ec4cf63e77fcf27a9584ba0663be208e9eaeeab33</citedby><cites>FETCH-LOGICAL-a315t-49234c5e5488954ee24fd988ec4cf63e77fcf27a9584ba0663be208e9eaeeab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct0501250$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct0501250$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26631669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vereshaga, Yana A</creatorcontrib><creatorcontrib>Volynsky, Pavel E</creatorcontrib><creatorcontrib>Nolde, Dmitry E</creatorcontrib><creatorcontrib>Arseniev, Alexander S</creatorcontrib><creatorcontrib>Efremov, Roman G</creatorcontrib><title>Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We describe one of the first attempts at unrestrained modeling of self-association of α-helices in implicit heterogeneous membrane-mimic media. The computational approach is based on the Monte Carlo conformational search for peptides in dihedral angles space. The membrane is approximated by an effective potential. The method is tested in calculations of two hydrophobic segments of human glycophorin A (GpA), known to form membrane-spanning dimers in real lipid bilayers. Our main findings may be summarized as follows. Modeling in vacuo does not adequately describe the behavior of GpA helices, failing to reproduce experimental structural data. The membrane environment stabilizes α-helical conformation of GpA monomers, inducing their transmembrane insertion and facilitating interhelical contacts. The voltage difference across the membrane promotes “head-to-head” orientation of the helices. “Fine-tuning” of the monomers in a complex is shown to be regulated by van der Waals interactions. Detailed exploration of conformational space of the system starting from arbitrary locations of two noninteracting helices reveals only several groups of energetically favorable structures. All of them represent tightly packed transmembrane helical dimers. In overall, they agree reasonably well with mutagenesis data, some of them are close to NMR-derived structures. A possibility of left-handed dimers is discussed. We assume that the observed moderate structural heterogeneity (the existence of several groups of states with close energies) reflects a real equilibrium dynamics of the monomersat least in membrane mimics used in experimental studies of GpA. The elaborated computational approach is universal and may be employed in studies of a wide class of membrane peptides and proteins.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAURi0EoqUw8ALICxIMAf8nZkMV0EqtGKBz5Lg3UqokLnYiwcbKa_IkuLR0YrqW7vHRdz-Ezim5oYTRW9sRSSiT5AANqRQ60Yqpw_2bZgN0EsKKEM4F48dowJTiVCk9RIsJ1NU7nrYdeGO7yrUBVy2eQ1N400K4-_78wjMIYbMovWvwovUQOm-qFpZ47uJHPDa-dvilavra_CpO0VFp6gBnuzlCi8eH1_EkmT0_Tcf3s8RwKrtEaMaFlSBFlmkpAJgolzrLwApbKg5pWtqSpUbLTBSGxNAFMJKBBgNgCs5H6GrrXXv31sdYeVMFC3Udo7s-5DQVQimqpY7o9Ra13oXgoczXvmqM_8gpyTct5vsWI3ux0_ZFA8s9-VdbBC63gLEhX7net_HKf0Q_oBN5pQ</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Vereshaga, Yana A</creator><creator>Volynsky, Pavel E</creator><creator>Nolde, Dmitry E</creator><creator>Arseniev, Alexander S</creator><creator>Efremov, Roman G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations</title><author>Vereshaga, Yana A ; Volynsky, Pavel E ; Nolde, Dmitry E ; Arseniev, Alexander S ; Efremov, Roman G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-49234c5e5488954ee24fd988ec4cf63e77fcf27a9584ba0663be208e9eaeeab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vereshaga, Yana A</creatorcontrib><creatorcontrib>Volynsky, Pavel E</creatorcontrib><creatorcontrib>Nolde, Dmitry E</creatorcontrib><creatorcontrib>Arseniev, Alexander S</creatorcontrib><creatorcontrib>Efremov, Roman G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vereshaga, Yana A</au><au>Volynsky, Pavel E</au><au>Nolde, Dmitry E</au><au>Arseniev, Alexander S</au><au>Efremov, Roman G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>1</volume><issue>6</issue><spage>1252</spage><epage>1264</epage><pages>1252-1264</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We describe one of the first attempts at unrestrained modeling of self-association of α-helices in implicit heterogeneous membrane-mimic media. The computational approach is based on the Monte Carlo conformational search for peptides in dihedral angles space. The membrane is approximated by an effective potential. The method is tested in calculations of two hydrophobic segments of human glycophorin A (GpA), known to form membrane-spanning dimers in real lipid bilayers. Our main findings may be summarized as follows. Modeling in vacuo does not adequately describe the behavior of GpA helices, failing to reproduce experimental structural data. The membrane environment stabilizes α-helical conformation of GpA monomers, inducing their transmembrane insertion and facilitating interhelical contacts. The voltage difference across the membrane promotes “head-to-head” orientation of the helices. “Fine-tuning” of the monomers in a complex is shown to be regulated by van der Waals interactions. Detailed exploration of conformational space of the system starting from arbitrary locations of two noninteracting helices reveals only several groups of energetically favorable structures. All of them represent tightly packed transmembrane helical dimers. In overall, they agree reasonably well with mutagenesis data, some of them are close to NMR-derived structures. A possibility of left-handed dimers is discussed. We assume that the observed moderate structural heterogeneity (the existence of several groups of states with close energies) reflects a real equilibrium dynamics of the monomersat least in membrane mimics used in experimental studies of GpA. The elaborated computational approach is universal and may be employed in studies of a wide class of membrane peptides and proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26631669</pmid><doi>10.1021/ct0501250</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2005-11, Vol.1 (6), p.1252-1264
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1744661959
source ACS Publications
title Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helix%20Interactions%20in%20Membranes:%E2%80%89%20Lessons%20from%20Unrestrained%20Monte%20Carlo%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Vereshaga,%20Yana%20A&rft.date=2005-11-01&rft.volume=1&rft.issue=6&rft.spage=1252&rft.epage=1264&rft.pages=1252-1264&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct0501250&rft_dat=%3Cproquest_cross%3E1744661959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744661959&rft_id=info:pmid/26631669&rfr_iscdi=true