Profiting from Prior Information in Bayesian Analyses of Ecological Data

1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of applied ecology 2005-12, Vol.42 (6), p.1012-1019
Hauptverfasser: McCarthy, Michael A., Masters, Pip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1019
container_issue 6
container_start_page 1012
container_title The Journal of applied ecology
container_volume 42
creator McCarthy, Michael A.
Masters, Pip
description 1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.
doi_str_mv 10.1111/j.1365-2664.2005.01101.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17436351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3505852</jstor_id><sourcerecordid>3505852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWC9v4CIIuut4kkySmYULL_WGYBfdhzRNJMN0oskU7dubsUXBlWeTA_n-n8OHECZQkDwXTUGY4GMqRFlQAF4AIUCKzx00-vnYRSMASsZVDWQfHaTUAEDNGRuhh2kMzve-e8UuhiWeRh8ifuxciEvd-9Bh3-FrvbbJ6w5fdbpdJ5twcHhiQhtevdEtvtW9PkJ7TrfJHm_fQzS7m8xuHsbPL_ePN1fPY1PKfALlVJC5I0ZawaipQC9sJTVoSmkpzJwuxAKIpK6UjnKuGXPgZF3W9cLM55QdovNN7VsM7yuberX0ydi21Z0Nq6SILJlgnGTw9A_YhFXM9ydFGStZLbjIULWBTAwpRevUW_RLHdeKgBr0qkYNFtVgUQ161bde9ZmjZ9t-nbIDF3VnfPrNS0ZFWcvMXW64D9_a9b_71dN0Mmw5f7LJN6kP8SfPOPCKU_YFJFmVHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233439656</pqid></control><display><type>article</type><title>Profiting from Prior Information in Bayesian Analyses of Ecological Data</title><source>Jstor Complete Legacy</source><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>McCarthy, Michael A. ; Masters, Pip</creator><creatorcontrib>McCarthy, Michael A. ; Masters, Pip</creatorcontrib><description>1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.</description><identifier>ISSN: 0021-8901</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/j.1365-2664.2005.01101.x</identifier><identifier>CODEN: JAPEAI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Aves ; Bayesian analysis ; Bayesian Methodology ; Biological and medical sciences ; Cinclus cinclus ; Conservation biology ; Dasycercus cristicauda ; Ecological modeling ; Ecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; habitat manipulation ; Human ecology ; Markov chain Monte Carlo ; mark–recapture ; Marsupials ; Modeling ; Observational studies ; Parametric models ; survival ; Survival analysis ; Survival rates ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>The Journal of applied ecology, 2005-12, Vol.42 (6), p.1012-1019</ispartof><rights>Copyright 2005 British Ecological Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</citedby><cites>FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3505852$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3505852$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17326497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarthy, Michael A.</creatorcontrib><creatorcontrib>Masters, Pip</creatorcontrib><title>Profiting from Prior Information in Bayesian Analyses of Ecological Data</title><title>The Journal of applied ecology</title><description>1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Aves</subject><subject>Bayesian analysis</subject><subject>Bayesian Methodology</subject><subject>Biological and medical sciences</subject><subject>Cinclus cinclus</subject><subject>Conservation biology</subject><subject>Dasycercus cristicauda</subject><subject>Ecological modeling</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>habitat manipulation</subject><subject>Human ecology</subject><subject>Markov chain Monte Carlo</subject><subject>mark–recapture</subject><subject>Marsupials</subject><subject>Modeling</subject><subject>Observational studies</subject><subject>Parametric models</subject><subject>survival</subject><subject>Survival analysis</subject><subject>Survival rates</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0021-8901</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWC9v4CIIuut4kkySmYULL_WGYBfdhzRNJMN0oskU7dubsUXBlWeTA_n-n8OHECZQkDwXTUGY4GMqRFlQAF4AIUCKzx00-vnYRSMASsZVDWQfHaTUAEDNGRuhh2kMzve-e8UuhiWeRh8ifuxciEvd-9Bh3-FrvbbJ6w5fdbpdJ5twcHhiQhtevdEtvtW9PkJ7TrfJHm_fQzS7m8xuHsbPL_ePN1fPY1PKfALlVJC5I0ZawaipQC9sJTVoSmkpzJwuxAKIpK6UjnKuGXPgZF3W9cLM55QdovNN7VsM7yuberX0ydi21Z0Nq6SILJlgnGTw9A_YhFXM9ydFGStZLbjIULWBTAwpRevUW_RLHdeKgBr0qkYNFtVgUQ161bde9ZmjZ9t-nbIDF3VnfPrNS0ZFWcvMXW64D9_a9b_71dN0Mmw5f7LJN6kP8SfPOPCKU_YFJFmVHw</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>McCarthy, Michael A.</creator><creator>Masters, Pip</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200512</creationdate><title>Profiting from Prior Information in Bayesian Analyses of Ecological Data</title><author>McCarthy, Michael A. ; Masters, Pip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Aves</topic><topic>Bayesian analysis</topic><topic>Bayesian Methodology</topic><topic>Biological and medical sciences</topic><topic>Cinclus cinclus</topic><topic>Conservation biology</topic><topic>Dasycercus cristicauda</topic><topic>Ecological modeling</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>habitat manipulation</topic><topic>Human ecology</topic><topic>Markov chain Monte Carlo</topic><topic>mark–recapture</topic><topic>Marsupials</topic><topic>Modeling</topic><topic>Observational studies</topic><topic>Parametric models</topic><topic>survival</topic><topic>Survival analysis</topic><topic>Survival rates</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Michael A.</creatorcontrib><creatorcontrib>Masters, Pip</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Michael A.</au><au>Masters, Pip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profiting from Prior Information in Bayesian Analyses of Ecological Data</atitle><jtitle>The Journal of applied ecology</jtitle><date>2005-12</date><risdate>2005</risdate><volume>42</volume><issue>6</issue><spage>1012</spage><epage>1019</epage><pages>1012-1019</pages><issn>0021-8901</issn><eissn>1365-2664</eissn><coden>JAPEAI</coden><abstract>1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2664.2005.01101.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8901
ispartof The Journal of applied ecology, 2005-12, Vol.42 (6), p.1012-1019
issn 0021-8901
1365-2664
language eng
recordid cdi_proquest_miscellaneous_17436351
source Jstor Complete Legacy; Wiley Online Library - AutoHoldings Journals; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animal, plant and microbial ecology
Applied ecology
Aves
Bayesian analysis
Bayesian Methodology
Biological and medical sciences
Cinclus cinclus
Conservation biology
Dasycercus cristicauda
Ecological modeling
Ecology
Fundamental and applied biological sciences. Psychology
General aspects
habitat manipulation
Human ecology
Markov chain Monte Carlo
mark–recapture
Marsupials
Modeling
Observational studies
Parametric models
survival
Survival analysis
Survival rates
Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution
title Profiting from Prior Information in Bayesian Analyses of Ecological Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profiting%20from%20Prior%20Information%20in%20Bayesian%20Analyses%20of%20Ecological%20Data&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=McCarthy,%20Michael%20A.&rft.date=2005-12&rft.volume=42&rft.issue=6&rft.spage=1012&rft.epage=1019&rft.pages=1012-1019&rft.issn=0021-8901&rft.eissn=1365-2664&rft.coden=JAPEAI&rft_id=info:doi/10.1111/j.1365-2664.2005.01101.x&rft_dat=%3Cjstor_proqu%3E3505852%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233439656&rft_id=info:pmid/&rft_jstor_id=3505852&rfr_iscdi=true