Profiting from Prior Information in Bayesian Analyses of Ecological Data
1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confi...
Gespeichert in:
Veröffentlicht in: | The Journal of applied ecology 2005-12, Vol.42 (6), p.1012-1019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 6 |
container_start_page | 1012 |
container_title | The Journal of applied ecology |
container_volume | 42 |
creator | McCarthy, Michael A. Masters, Pip |
description | 1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies. |
doi_str_mv | 10.1111/j.1365-2664.2005.01101.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17436351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3505852</jstor_id><sourcerecordid>3505852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWC9v4CIIuut4kkySmYULL_WGYBfdhzRNJMN0oskU7dubsUXBlWeTA_n-n8OHECZQkDwXTUGY4GMqRFlQAF4AIUCKzx00-vnYRSMASsZVDWQfHaTUAEDNGRuhh2kMzve-e8UuhiWeRh8ifuxciEvd-9Bh3-FrvbbJ6w5fdbpdJ5twcHhiQhtevdEtvtW9PkJ7TrfJHm_fQzS7m8xuHsbPL_ePN1fPY1PKfALlVJC5I0ZawaipQC9sJTVoSmkpzJwuxAKIpK6UjnKuGXPgZF3W9cLM55QdovNN7VsM7yuberX0ydi21Z0Nq6SILJlgnGTw9A_YhFXM9ydFGStZLbjIULWBTAwpRevUW_RLHdeKgBr0qkYNFtVgUQ161bde9ZmjZ9t-nbIDF3VnfPrNS0ZFWcvMXW64D9_a9b_71dN0Mmw5f7LJN6kP8SfPOPCKU_YFJFmVHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233439656</pqid></control><display><type>article</type><title>Profiting from Prior Information in Bayesian Analyses of Ecological Data</title><source>Jstor Complete Legacy</source><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>McCarthy, Michael A. ; Masters, Pip</creator><creatorcontrib>McCarthy, Michael A. ; Masters, Pip</creatorcontrib><description>1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.</description><identifier>ISSN: 0021-8901</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/j.1365-2664.2005.01101.x</identifier><identifier>CODEN: JAPEAI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Aves ; Bayesian analysis ; Bayesian Methodology ; Biological and medical sciences ; Cinclus cinclus ; Conservation biology ; Dasycercus cristicauda ; Ecological modeling ; Ecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; habitat manipulation ; Human ecology ; Markov chain Monte Carlo ; mark–recapture ; Marsupials ; Modeling ; Observational studies ; Parametric models ; survival ; Survival analysis ; Survival rates ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>The Journal of applied ecology, 2005-12, Vol.42 (6), p.1012-1019</ispartof><rights>Copyright 2005 British Ecological Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</citedby><cites>FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3505852$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3505852$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17326497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarthy, Michael A.</creatorcontrib><creatorcontrib>Masters, Pip</creatorcontrib><title>Profiting from Prior Information in Bayesian Analyses of Ecological Data</title><title>The Journal of applied ecology</title><description>1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Aves</subject><subject>Bayesian analysis</subject><subject>Bayesian Methodology</subject><subject>Biological and medical sciences</subject><subject>Cinclus cinclus</subject><subject>Conservation biology</subject><subject>Dasycercus cristicauda</subject><subject>Ecological modeling</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>habitat manipulation</subject><subject>Human ecology</subject><subject>Markov chain Monte Carlo</subject><subject>mark–recapture</subject><subject>Marsupials</subject><subject>Modeling</subject><subject>Observational studies</subject><subject>Parametric models</subject><subject>survival</subject><subject>Survival analysis</subject><subject>Survival rates</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0021-8901</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWC9v4CIIuut4kkySmYULL_WGYBfdhzRNJMN0oskU7dubsUXBlWeTA_n-n8OHECZQkDwXTUGY4GMqRFlQAF4AIUCKzx00-vnYRSMASsZVDWQfHaTUAEDNGRuhh2kMzve-e8UuhiWeRh8ifuxciEvd-9Bh3-FrvbbJ6w5fdbpdJ5twcHhiQhtevdEtvtW9PkJ7TrfJHm_fQzS7m8xuHsbPL_ePN1fPY1PKfALlVJC5I0ZawaipQC9sJTVoSmkpzJwuxAKIpK6UjnKuGXPgZF3W9cLM55QdovNN7VsM7yuberX0ydi21Z0Nq6SILJlgnGTw9A_YhFXM9ydFGStZLbjIULWBTAwpRevUW_RLHdeKgBr0qkYNFtVgUQ161bde9ZmjZ9t-nbIDF3VnfPrNS0ZFWcvMXW64D9_a9b_71dN0Mmw5f7LJN6kP8SfPOPCKU_YFJFmVHw</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>McCarthy, Michael A.</creator><creator>Masters, Pip</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200512</creationdate><title>Profiting from Prior Information in Bayesian Analyses of Ecological Data</title><author>McCarthy, Michael A. ; Masters, Pip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4721-25261bf1c7e632c80ade87a0a22246cb2d6d0172f47f255a33f0f79499dcbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Aves</topic><topic>Bayesian analysis</topic><topic>Bayesian Methodology</topic><topic>Biological and medical sciences</topic><topic>Cinclus cinclus</topic><topic>Conservation biology</topic><topic>Dasycercus cristicauda</topic><topic>Ecological modeling</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>habitat manipulation</topic><topic>Human ecology</topic><topic>Markov chain Monte Carlo</topic><topic>mark–recapture</topic><topic>Marsupials</topic><topic>Modeling</topic><topic>Observational studies</topic><topic>Parametric models</topic><topic>survival</topic><topic>Survival analysis</topic><topic>Survival rates</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Michael A.</creatorcontrib><creatorcontrib>Masters, Pip</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Michael A.</au><au>Masters, Pip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profiting from Prior Information in Bayesian Analyses of Ecological Data</atitle><jtitle>The Journal of applied ecology</jtitle><date>2005-12</date><risdate>2005</risdate><volume>42</volume><issue>6</issue><spage>1012</spage><epage>1019</epage><pages>1012-1019</pages><issn>0021-8901</issn><eissn>1365-2664</eissn><coden>JAPEAI</coden><abstract>1. Most ecological studies include prior information only implicitly, usually in their design or the discussion of results. In this study, two examples demonstrate that using Bayesian statistics to incorporate basic ecological principles and prior data can be very cost-effective for increasing confidence in ecological research. 2. The first example is based on examining the effects of an experimental manipulation of the habitat of mulgara Dasycercus cristicauda, a marsupial of inland Australia. The second example is based on observational mark-recapture data to estimate the annual survival of the European dipper Cinclus cinclus, a passerine in France. 3. In the mulgara example, the prior information obtained from an observational study increased confidence that there was an adverse effect of experimental habitat manipulation on the species. The results suggested that the capture rate of mulgara was reduced to approximately one-quarter by reduction of vegetation cover. 4. In the European dipper example, prior information based on the body mass of the species and estimates of annual survival of other European passerines was shown to be worth between 1 and 5 years of mark-recapture field data. 5. Synthesis and applications. Body mass can be used to predict annual survival of European passerines and other animals. Results of observational studies can provide prior information in experimental studies of impacts of habitat change. By using Bayesian methods, such prior information, if represented in a coherent and logical way, can be cost-effective for adding certainty to ecological studies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2664.2005.01101.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8901 |
ispartof | The Journal of applied ecology, 2005-12, Vol.42 (6), p.1012-1019 |
issn | 0021-8901 1365-2664 |
language | eng |
recordid | cdi_proquest_miscellaneous_17436351 |
source | Jstor Complete Legacy; Wiley Online Library - AutoHoldings Journals; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animal, plant and microbial ecology Applied ecology Aves Bayesian analysis Bayesian Methodology Biological and medical sciences Cinclus cinclus Conservation biology Dasycercus cristicauda Ecological modeling Ecology Fundamental and applied biological sciences. Psychology General aspects habitat manipulation Human ecology Markov chain Monte Carlo mark–recapture Marsupials Modeling Observational studies Parametric models survival Survival analysis Survival rates Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
title | Profiting from Prior Information in Bayesian Analyses of Ecological Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profiting%20from%20Prior%20Information%20in%20Bayesian%20Analyses%20of%20Ecological%20Data&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=McCarthy,%20Michael%20A.&rft.date=2005-12&rft.volume=42&rft.issue=6&rft.spage=1012&rft.epage=1019&rft.pages=1012-1019&rft.issn=0021-8901&rft.eissn=1365-2664&rft.coden=JAPEAI&rft_id=info:doi/10.1111/j.1365-2664.2005.01101.x&rft_dat=%3Cjstor_proqu%3E3505852%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233439656&rft_id=info:pmid/&rft_jstor_id=3505852&rfr_iscdi=true |