Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice

The development of technology enables the reduction of material size in science. The use of particle reduction in size from micro to nanoscale not only provides benefits to diverse scientific fields but also poses potential risks to humans and the environment. For the successful application of nanom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2006-01, Vol.89 (1), p.338-347
Hauptverfasser: Kim, Jun Sung, Yoon, Tae-Jong, Yu, Kyeong Nam, Kim, Byung Gul, Park, Sung Jin, Kim, Hyun Woo, Lee, Kee Ho, Park, Seung Bum, Lee, Jin-Kyu, Cho, Myung Haing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 1
container_start_page 338
container_title Toxicological sciences
container_volume 89
creator Kim, Jun Sung
Yoon, Tae-Jong
Yu, Kyeong Nam
Kim, Byung Gul
Park, Sung Jin
Kim, Hyun Woo
Lee, Kee Ho
Park, Seung Bum
Lee, Jin-Kyu
Cho, Myung Haing
description The development of technology enables the reduction of material size in science. The use of particle reduction in size from micro to nanoscale not only provides benefits to diverse scientific fields but also poses potential risks to humans and the environment. For the successful application of nanomaterials in bioscience, it is essential to understand the biological fate and potential toxicity of nanoparticles. The aim of this study was to evaluate the biological distribution as well as the potential toxicity of magnetic nanoparticles to enable their diverse applications in life science, such as drug development, protein detection, and gene delivery. We recently synthesized biocompatible silica-overcoated magnetic nanoparticles containing rhodamine B isothiocyanate (RITC) within a silica shell of controllable thickness [MNPs@SiO2(RITC)]. In this study, the MNPs@SiO2(RITC) with 50-nm thickness were used as a model nanomaterial. After intraperitoneal administration of MNPs@SiO2(RITC) for 4 weeks into mice, the nanoparticles were detected in the brain, indicating that such nanosized materials can penetrate blood–brain barrier (BBB) without disturbing its function or producing apparent toxicity. After a 4-week observation, MNPs@SiO2(RITC) was still present in various organs without causing apparent toxicity. Taken together, our results demonstrated that magnetic nanoparticles of 50-nm size did not cause apparent toxicity under the experimental conditions of this study.
doi_str_mv 10.1093/toxsci/kfj027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17435034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17435034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-fe98c765925b907a3724240a6475b9b2008d85982e4dae868ccbdf48fee26b963</originalsourceid><addsrcrecordid>eNpFkM9PwjAYhhujEUSPXk1P3iZt1_XHUVHACHjBxHhpuq4zhbHiuiXw3zuzRU7fm_d78h4eAG4xesBIxuPaH4Jx422-QYSfgWFbsghJIs_7zJBAA3AVwgYhjBmSl2CAGYk5lngIntb-4Iyrj1CXGVy7EBoLn12oK5c2tfMl9Dlc6u_S1s7AlS79XldtLGyAroRLZ-w1uMh1EexNf0fgY_qynsyjxfvsdfK4iAxlSR3lVgrDWSJJkkrEdcwJJRRpRnlbpAQhkYlECmJppq1gwpg0y6nIrSUslSwegftud1_5n8aGWu1cMLYodGl9ExTmNE5QTFsw6kBT-RAqm6t95Xa6OiqM1J801UlTnbSWv-uHm3RnsxPdWzoNtl7s4f-vq61iPOaJmn9-qSmib5MZXqll_Atz63jU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17435034</pqid></control><display><type>article</type><title>Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jun Sung ; Yoon, Tae-Jong ; Yu, Kyeong Nam ; Kim, Byung Gul ; Park, Sung Jin ; Kim, Hyun Woo ; Lee, Kee Ho ; Park, Seung Bum ; Lee, Jin-Kyu ; Cho, Myung Haing</creator><creatorcontrib>Kim, Jun Sung ; Yoon, Tae-Jong ; Yu, Kyeong Nam ; Kim, Byung Gul ; Park, Sung Jin ; Kim, Hyun Woo ; Lee, Kee Ho ; Park, Seung Bum ; Lee, Jin-Kyu ; Cho, Myung Haing</creatorcontrib><description>The development of technology enables the reduction of material size in science. The use of particle reduction in size from micro to nanoscale not only provides benefits to diverse scientific fields but also poses potential risks to humans and the environment. For the successful application of nanomaterials in bioscience, it is essential to understand the biological fate and potential toxicity of nanoparticles. The aim of this study was to evaluate the biological distribution as well as the potential toxicity of magnetic nanoparticles to enable their diverse applications in life science, such as drug development, protein detection, and gene delivery. We recently synthesized biocompatible silica-overcoated magnetic nanoparticles containing rhodamine B isothiocyanate (RITC) within a silica shell of controllable thickness [MNPs@SiO2(RITC)]. In this study, the MNPs@SiO2(RITC) with 50-nm thickness were used as a model nanomaterial. After intraperitoneal administration of MNPs@SiO2(RITC) for 4 weeks into mice, the nanoparticles were detected in the brain, indicating that such nanosized materials can penetrate blood–brain barrier (BBB) without disturbing its function or producing apparent toxicity. After a 4-week observation, MNPs@SiO2(RITC) was still present in various organs without causing apparent toxicity. Taken together, our results demonstrated that magnetic nanoparticles of 50-nm size did not cause apparent toxicity under the experimental conditions of this study.</description><identifier>ISSN: 1096-6080</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfj027</identifier><identifier>PMID: 16237191</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; blood-brain barrier ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain - drug effects ; Brain - metabolism ; Coated Materials, Biocompatible ; Drug Delivery Systems ; Female ; Injections, Intraperitoneal ; magnetic nanoparticles ; Magnetics ; Male ; Mice ; Mice, Inbred ICR ; Nanostructures - toxicity ; Rhodamines - chemistry ; Rhodamines - pharmacokinetics ; Rhodamines - toxicity ; Silicon Dioxide - chemistry ; Silicon Dioxide - pharmacokinetics ; Silicon Dioxide - toxicity ; Tissue Distribution</subject><ispartof>Toxicological sciences, 2006-01, Vol.89 (1), p.338-347</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-fe98c765925b907a3724240a6475b9b2008d85982e4dae868ccbdf48fee26b963</citedby><cites>FETCH-LOGICAL-c465t-fe98c765925b907a3724240a6475b9b2008d85982e4dae868ccbdf48fee26b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16237191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jun Sung</creatorcontrib><creatorcontrib>Yoon, Tae-Jong</creatorcontrib><creatorcontrib>Yu, Kyeong Nam</creatorcontrib><creatorcontrib>Kim, Byung Gul</creatorcontrib><creatorcontrib>Park, Sung Jin</creatorcontrib><creatorcontrib>Kim, Hyun Woo</creatorcontrib><creatorcontrib>Lee, Kee Ho</creatorcontrib><creatorcontrib>Park, Seung Bum</creatorcontrib><creatorcontrib>Lee, Jin-Kyu</creatorcontrib><creatorcontrib>Cho, Myung Haing</creatorcontrib><title>Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice</title><title>Toxicological sciences</title><addtitle>Toxicol. Sci</addtitle><description>The development of technology enables the reduction of material size in science. The use of particle reduction in size from micro to nanoscale not only provides benefits to diverse scientific fields but also poses potential risks to humans and the environment. For the successful application of nanomaterials in bioscience, it is essential to understand the biological fate and potential toxicity of nanoparticles. The aim of this study was to evaluate the biological distribution as well as the potential toxicity of magnetic nanoparticles to enable their diverse applications in life science, such as drug development, protein detection, and gene delivery. We recently synthesized biocompatible silica-overcoated magnetic nanoparticles containing rhodamine B isothiocyanate (RITC) within a silica shell of controllable thickness [MNPs@SiO2(RITC)]. In this study, the MNPs@SiO2(RITC) with 50-nm thickness were used as a model nanomaterial. After intraperitoneal administration of MNPs@SiO2(RITC) for 4 weeks into mice, the nanoparticles were detected in the brain, indicating that such nanosized materials can penetrate blood–brain barrier (BBB) without disturbing its function or producing apparent toxicity. After a 4-week observation, MNPs@SiO2(RITC) was still present in various organs without causing apparent toxicity. Taken together, our results demonstrated that magnetic nanoparticles of 50-nm size did not cause apparent toxicity under the experimental conditions of this study.</description><subject>Animals</subject><subject>blood-brain barrier</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Coated Materials, Biocompatible</subject><subject>Drug Delivery Systems</subject><subject>Female</subject><subject>Injections, Intraperitoneal</subject><subject>magnetic nanoparticles</subject><subject>Magnetics</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred ICR</subject><subject>Nanostructures - toxicity</subject><subject>Rhodamines - chemistry</subject><subject>Rhodamines - pharmacokinetics</subject><subject>Rhodamines - toxicity</subject><subject>Silicon Dioxide - chemistry</subject><subject>Silicon Dioxide - pharmacokinetics</subject><subject>Silicon Dioxide - toxicity</subject><subject>Tissue Distribution</subject><issn>1096-6080</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM9PwjAYhhujEUSPXk1P3iZt1_XHUVHACHjBxHhpuq4zhbHiuiXw3zuzRU7fm_d78h4eAG4xesBIxuPaH4Jx422-QYSfgWFbsghJIs_7zJBAA3AVwgYhjBmSl2CAGYk5lngIntb-4Iyrj1CXGVy7EBoLn12oK5c2tfMl9Dlc6u_S1s7AlS79XldtLGyAroRLZ-w1uMh1EexNf0fgY_qynsyjxfvsdfK4iAxlSR3lVgrDWSJJkkrEdcwJJRRpRnlbpAQhkYlECmJppq1gwpg0y6nIrSUslSwegftud1_5n8aGWu1cMLYodGl9ExTmNE5QTFsw6kBT-RAqm6t95Xa6OiqM1J801UlTnbSWv-uHm3RnsxPdWzoNtl7s4f-vq61iPOaJmn9-qSmib5MZXqll_Atz63jU</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Kim, Jun Sung</creator><creator>Yoon, Tae-Jong</creator><creator>Yu, Kyeong Nam</creator><creator>Kim, Byung Gul</creator><creator>Park, Sung Jin</creator><creator>Kim, Hyun Woo</creator><creator>Lee, Kee Ho</creator><creator>Park, Seung Bum</creator><creator>Lee, Jin-Kyu</creator><creator>Cho, Myung Haing</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20060101</creationdate><title>Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice</title><author>Kim, Jun Sung ; Yoon, Tae-Jong ; Yu, Kyeong Nam ; Kim, Byung Gul ; Park, Sung Jin ; Kim, Hyun Woo ; Lee, Kee Ho ; Park, Seung Bum ; Lee, Jin-Kyu ; Cho, Myung Haing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-fe98c765925b907a3724240a6475b9b2008d85982e4dae868ccbdf48fee26b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>blood-brain barrier</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Coated Materials, Biocompatible</topic><topic>Drug Delivery Systems</topic><topic>Female</topic><topic>Injections, Intraperitoneal</topic><topic>magnetic nanoparticles</topic><topic>Magnetics</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred ICR</topic><topic>Nanostructures - toxicity</topic><topic>Rhodamines - chemistry</topic><topic>Rhodamines - pharmacokinetics</topic><topic>Rhodamines - toxicity</topic><topic>Silicon Dioxide - chemistry</topic><topic>Silicon Dioxide - pharmacokinetics</topic><topic>Silicon Dioxide - toxicity</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jun Sung</creatorcontrib><creatorcontrib>Yoon, Tae-Jong</creatorcontrib><creatorcontrib>Yu, Kyeong Nam</creatorcontrib><creatorcontrib>Kim, Byung Gul</creatorcontrib><creatorcontrib>Park, Sung Jin</creatorcontrib><creatorcontrib>Kim, Hyun Woo</creatorcontrib><creatorcontrib>Lee, Kee Ho</creatorcontrib><creatorcontrib>Park, Seung Bum</creatorcontrib><creatorcontrib>Lee, Jin-Kyu</creatorcontrib><creatorcontrib>Cho, Myung Haing</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jun Sung</au><au>Yoon, Tae-Jong</au><au>Yu, Kyeong Nam</au><au>Kim, Byung Gul</au><au>Park, Sung Jin</au><au>Kim, Hyun Woo</au><au>Lee, Kee Ho</au><au>Park, Seung Bum</au><au>Lee, Jin-Kyu</au><au>Cho, Myung Haing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol. Sci</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>89</volume><issue>1</issue><spage>338</spage><epage>347</epage><pages>338-347</pages><issn>1096-6080</issn><eissn>1096-0929</eissn><abstract>The development of technology enables the reduction of material size in science. The use of particle reduction in size from micro to nanoscale not only provides benefits to diverse scientific fields but also poses potential risks to humans and the environment. For the successful application of nanomaterials in bioscience, it is essential to understand the biological fate and potential toxicity of nanoparticles. The aim of this study was to evaluate the biological distribution as well as the potential toxicity of magnetic nanoparticles to enable their diverse applications in life science, such as drug development, protein detection, and gene delivery. We recently synthesized biocompatible silica-overcoated magnetic nanoparticles containing rhodamine B isothiocyanate (RITC) within a silica shell of controllable thickness [MNPs@SiO2(RITC)]. In this study, the MNPs@SiO2(RITC) with 50-nm thickness were used as a model nanomaterial. After intraperitoneal administration of MNPs@SiO2(RITC) for 4 weeks into mice, the nanoparticles were detected in the brain, indicating that such nanosized materials can penetrate blood–brain barrier (BBB) without disturbing its function or producing apparent toxicity. After a 4-week observation, MNPs@SiO2(RITC) was still present in various organs without causing apparent toxicity. Taken together, our results demonstrated that magnetic nanoparticles of 50-nm size did not cause apparent toxicity under the experimental conditions of this study.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>16237191</pmid><doi>10.1093/toxsci/kfj027</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-6080
ispartof Toxicological sciences, 2006-01, Vol.89 (1), p.338-347
issn 1096-6080
1096-0929
language eng
recordid cdi_proquest_miscellaneous_17435034
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
blood-brain barrier
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Brain - drug effects
Brain - metabolism
Coated Materials, Biocompatible
Drug Delivery Systems
Female
Injections, Intraperitoneal
magnetic nanoparticles
Magnetics
Male
Mice
Mice, Inbred ICR
Nanostructures - toxicity
Rhodamines - chemistry
Rhodamines - pharmacokinetics
Rhodamines - toxicity
Silicon Dioxide - chemistry
Silicon Dioxide - pharmacokinetics
Silicon Dioxide - toxicity
Tissue Distribution
title Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toxicity%20and%20Tissue%20Distribution%20of%20Magnetic%20Nanoparticles%20in%20Mice&rft.jtitle=Toxicological%20sciences&rft.au=Kim,%20Jun%20Sung&rft.date=2006-01-01&rft.volume=89&rft.issue=1&rft.spage=338&rft.epage=347&rft.pages=338-347&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfj027&rft_dat=%3Cproquest_cross%3E17435034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17435034&rft_id=info:pmid/16237191&rfr_iscdi=true