Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization

The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-12, Vol.280 (49), p.40524-40533
Hauptverfasser: Gulshan, Kailash, Rovinsky, Sherry A., Coleman, Sean T., Moye-Rowley, W. Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40533
container_issue 49
container_start_page 40524
container_title The Journal of biological chemistry
container_volume 280
creator Gulshan, Kailash
Rovinsky, Sherry A.
Coleman, Sean T.
Moye-Rowley, W. Scott
description The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.
doi_str_mv 10.1074/jbc.M504716200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17422814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820590169</els_id><sourcerecordid>17422814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</originalsourceid><addsrcrecordid>eNp1kMFu1DAQQC0EokvhyhH5gLhlsR1nbR9L1QLS0kqoSHCynPFk11U2DnZSoF9fL7tST53LaDRvRjOPkLecLTlT8uNtC8tvDZOKrwRjz8iCM11XdcN_PicLxgSvjGj0CXmV8y0rIQ1_SU4KzI1amQXx13-Dd8NU5REhdAHoZex9GDY0dvSXG_lIv-Nm7t2EmX6K05beJDdkSGGcQhxcT89gCnduX1A3eHo1Q48u0XUE14f7_43X5EXn-oxvjvmU_Li8uDn_Uq2vP389P1tX0DA9Va1ZtarhElwNjZcGdd0pA6rT5QchhUYlfQmmVrJWmgnpTK19w7ApZC3rU_LhsHdM8feMebK7kAH73g0Y52y5kkJovgeXBxBSzDlhZ8cUdi79s5zZvVdbvNpHr2Xg3XHz3O7QP-JHkQV4fwC2YbP9ExLaNkTY4s4Kzaw0VrLyQsH0AcOi4S5gshkCDoC-jMBkfQxPnfAAMOSSOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17422814</pqid></control><display><type>article</type><title>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gulshan, Kailash ; Rovinsky, Sherry A. ; Coleman, Sean T. ; Moye-Rowley, W. Scott</creator><creatorcontrib>Gulshan, Kailash ; Rovinsky, Sherry A. ; Coleman, Sean T. ; Moye-Rowley, W. Scott</creatorcontrib><description>The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M504716200</identifier><identifier>PMID: 16219769</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Cell Nucleus - chemistry ; Cysteine - analysis ; Cytoplasm - chemistry ; Deoxyribonuclease I ; Disulfides - chemistry ; DNA - metabolism ; DNA Footprinting ; Gene Deletion ; Gene Expression - drug effects ; Hydrogen Peroxide - pharmacology ; Mediator Complex ; Membrane Proteins - genetics ; Mutagenesis ; Oxidants - pharmacology ; Oxidative Stress ; Peptide Fragments - chemistry ; Polymerase Chain Reaction ; Promoter Regions, Genetic - genetics ; Protein Folding ; Recombinant Fusion Proteins ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - analysis ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Structure-Activity Relationship ; Thioredoxins - genetics ; Transcription Factors - analysis ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Transcription Factors - physiology ; Transcription, Genetic - physiology</subject><ispartof>The Journal of biological chemistry, 2005-12, Vol.280 (49), p.40524-40533</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</citedby><cites>FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16219769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulshan, Kailash</creatorcontrib><creatorcontrib>Rovinsky, Sherry A.</creatorcontrib><creatorcontrib>Coleman, Sean T.</creatorcontrib><creatorcontrib>Moye-Rowley, W. Scott</creatorcontrib><title>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.</description><subject>Binding Sites</subject><subject>Cell Nucleus - chemistry</subject><subject>Cysteine - analysis</subject><subject>Cytoplasm - chemistry</subject><subject>Deoxyribonuclease I</subject><subject>Disulfides - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Footprinting</subject><subject>Gene Deletion</subject><subject>Gene Expression - drug effects</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Mediator Complex</subject><subject>Membrane Proteins - genetics</subject><subject>Mutagenesis</subject><subject>Oxidants - pharmacology</subject><subject>Oxidative Stress</subject><subject>Peptide Fragments - chemistry</subject><subject>Polymerase Chain Reaction</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Folding</subject><subject>Recombinant Fusion Proteins</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - analysis</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Structure-Activity Relationship</subject><subject>Thioredoxins - genetics</subject><subject>Transcription Factors - analysis</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription Factors - physiology</subject><subject>Transcription, Genetic - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFu1DAQQC0EokvhyhH5gLhlsR1nbR9L1QLS0kqoSHCynPFk11U2DnZSoF9fL7tST53LaDRvRjOPkLecLTlT8uNtC8tvDZOKrwRjz8iCM11XdcN_PicLxgSvjGj0CXmV8y0rIQ1_SU4KzI1amQXx13-Dd8NU5REhdAHoZex9GDY0dvSXG_lIv-Nm7t2EmX6K05beJDdkSGGcQhxcT89gCnduX1A3eHo1Q48u0XUE14f7_43X5EXn-oxvjvmU_Li8uDn_Uq2vP389P1tX0DA9Va1ZtarhElwNjZcGdd0pA6rT5QchhUYlfQmmVrJWmgnpTK19w7ApZC3rU_LhsHdM8feMebK7kAH73g0Y52y5kkJovgeXBxBSzDlhZ8cUdi79s5zZvVdbvNpHr2Xg3XHz3O7QP-JHkQV4fwC2YbP9ExLaNkTY4s4Kzaw0VrLyQsH0AcOi4S5gshkCDoC-jMBkfQxPnfAAMOSSOg</recordid><startdate>20051209</startdate><enddate>20051209</enddate><creator>Gulshan, Kailash</creator><creator>Rovinsky, Sherry A.</creator><creator>Coleman, Sean T.</creator><creator>Moye-Rowley, W. Scott</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope></search><sort><creationdate>20051209</creationdate><title>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</title><author>Gulshan, Kailash ; Rovinsky, Sherry A. ; Coleman, Sean T. ; Moye-Rowley, W. Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Binding Sites</topic><topic>Cell Nucleus - chemistry</topic><topic>Cysteine - analysis</topic><topic>Cytoplasm - chemistry</topic><topic>Deoxyribonuclease I</topic><topic>Disulfides - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Footprinting</topic><topic>Gene Deletion</topic><topic>Gene Expression - drug effects</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Mediator Complex</topic><topic>Membrane Proteins - genetics</topic><topic>Mutagenesis</topic><topic>Oxidants - pharmacology</topic><topic>Oxidative Stress</topic><topic>Peptide Fragments - chemistry</topic><topic>Polymerase Chain Reaction</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Folding</topic><topic>Recombinant Fusion Proteins</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - analysis</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Structure-Activity Relationship</topic><topic>Thioredoxins - genetics</topic><topic>Transcription Factors - analysis</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription Factors - physiology</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulshan, Kailash</creatorcontrib><creatorcontrib>Rovinsky, Sherry A.</creatorcontrib><creatorcontrib>Coleman, Sean T.</creatorcontrib><creatorcontrib>Moye-Rowley, W. Scott</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulshan, Kailash</au><au>Rovinsky, Sherry A.</au><au>Coleman, Sean T.</au><au>Moye-Rowley, W. Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-12-09</date><risdate>2005</risdate><volume>280</volume><issue>49</issue><spage>40524</spage><epage>40533</epage><pages>40524-40533</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16219769</pmid><doi>10.1074/jbc.M504716200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2005-12, Vol.280 (49), p.40524-40533
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_17422814
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Binding Sites
Cell Nucleus - chemistry
Cysteine - analysis
Cytoplasm - chemistry
Deoxyribonuclease I
Disulfides - chemistry
DNA - metabolism
DNA Footprinting
Gene Deletion
Gene Expression - drug effects
Hydrogen Peroxide - pharmacology
Mediator Complex
Membrane Proteins - genetics
Mutagenesis
Oxidants - pharmacology
Oxidative Stress
Peptide Fragments - chemistry
Polymerase Chain Reaction
Promoter Regions, Genetic - genetics
Protein Folding
Recombinant Fusion Proteins
RNA Polymerase II - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - analysis
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Structure-Activity Relationship
Thioredoxins - genetics
Transcription Factors - analysis
Transcription Factors - chemistry
Transcription Factors - metabolism
Transcription Factors - physiology
Transcription, Genetic - physiology
title Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidant-specific%20Folding%20of%20Yap1p%20Regulates%20Both%20Transcriptional%20Activation%20and%20Nuclear%20Localization&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Gulshan,%20Kailash&rft.date=2005-12-09&rft.volume=280&rft.issue=49&rft.spage=40524&rft.epage=40533&rft.pages=40524-40533&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M504716200&rft_dat=%3Cproquest_cross%3E17422814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17422814&rft_id=info:pmid/16219769&rft_els_id=S0021925820590169&rfr_iscdi=true