Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization
The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-12, Vol.280 (49), p.40524-40533 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40533 |
---|---|
container_issue | 49 |
container_start_page | 40524 |
container_title | The Journal of biological chemistry |
container_volume | 280 |
creator | Gulshan, Kailash Rovinsky, Sherry A. Coleman, Sean T. Moye-Rowley, W. Scott |
description | The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation. |
doi_str_mv | 10.1074/jbc.M504716200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17422814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820590169</els_id><sourcerecordid>17422814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</originalsourceid><addsrcrecordid>eNp1kMFu1DAQQC0EokvhyhH5gLhlsR1nbR9L1QLS0kqoSHCynPFk11U2DnZSoF9fL7tST53LaDRvRjOPkLecLTlT8uNtC8tvDZOKrwRjz8iCM11XdcN_PicLxgSvjGj0CXmV8y0rIQ1_SU4KzI1amQXx13-Dd8NU5REhdAHoZex9GDY0dvSXG_lIv-Nm7t2EmX6K05beJDdkSGGcQhxcT89gCnduX1A3eHo1Q48u0XUE14f7_43X5EXn-oxvjvmU_Li8uDn_Uq2vP389P1tX0DA9Va1ZtarhElwNjZcGdd0pA6rT5QchhUYlfQmmVrJWmgnpTK19w7ApZC3rU_LhsHdM8feMebK7kAH73g0Y52y5kkJovgeXBxBSzDlhZ8cUdi79s5zZvVdbvNpHr2Xg3XHz3O7QP-JHkQV4fwC2YbP9ExLaNkTY4s4Kzaw0VrLyQsH0AcOi4S5gshkCDoC-jMBkfQxPnfAAMOSSOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17422814</pqid></control><display><type>article</type><title>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gulshan, Kailash ; Rovinsky, Sherry A. ; Coleman, Sean T. ; Moye-Rowley, W. Scott</creator><creatorcontrib>Gulshan, Kailash ; Rovinsky, Sherry A. ; Coleman, Sean T. ; Moye-Rowley, W. Scott</creatorcontrib><description>The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M504716200</identifier><identifier>PMID: 16219769</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Cell Nucleus - chemistry ; Cysteine - analysis ; Cytoplasm - chemistry ; Deoxyribonuclease I ; Disulfides - chemistry ; DNA - metabolism ; DNA Footprinting ; Gene Deletion ; Gene Expression - drug effects ; Hydrogen Peroxide - pharmacology ; Mediator Complex ; Membrane Proteins - genetics ; Mutagenesis ; Oxidants - pharmacology ; Oxidative Stress ; Peptide Fragments - chemistry ; Polymerase Chain Reaction ; Promoter Regions, Genetic - genetics ; Protein Folding ; Recombinant Fusion Proteins ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - analysis ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Structure-Activity Relationship ; Thioredoxins - genetics ; Transcription Factors - analysis ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Transcription Factors - physiology ; Transcription, Genetic - physiology</subject><ispartof>The Journal of biological chemistry, 2005-12, Vol.280 (49), p.40524-40533</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</citedby><cites>FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16219769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulshan, Kailash</creatorcontrib><creatorcontrib>Rovinsky, Sherry A.</creatorcontrib><creatorcontrib>Coleman, Sean T.</creatorcontrib><creatorcontrib>Moye-Rowley, W. Scott</creatorcontrib><title>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.</description><subject>Binding Sites</subject><subject>Cell Nucleus - chemistry</subject><subject>Cysteine - analysis</subject><subject>Cytoplasm - chemistry</subject><subject>Deoxyribonuclease I</subject><subject>Disulfides - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Footprinting</subject><subject>Gene Deletion</subject><subject>Gene Expression - drug effects</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Mediator Complex</subject><subject>Membrane Proteins - genetics</subject><subject>Mutagenesis</subject><subject>Oxidants - pharmacology</subject><subject>Oxidative Stress</subject><subject>Peptide Fragments - chemistry</subject><subject>Polymerase Chain Reaction</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Folding</subject><subject>Recombinant Fusion Proteins</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - analysis</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Structure-Activity Relationship</subject><subject>Thioredoxins - genetics</subject><subject>Transcription Factors - analysis</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription Factors - physiology</subject><subject>Transcription, Genetic - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFu1DAQQC0EokvhyhH5gLhlsR1nbR9L1QLS0kqoSHCynPFk11U2DnZSoF9fL7tST53LaDRvRjOPkLecLTlT8uNtC8tvDZOKrwRjz8iCM11XdcN_PicLxgSvjGj0CXmV8y0rIQ1_SU4KzI1amQXx13-Dd8NU5REhdAHoZex9GDY0dvSXG_lIv-Nm7t2EmX6K05beJDdkSGGcQhxcT89gCnduX1A3eHo1Q48u0XUE14f7_43X5EXn-oxvjvmU_Li8uDn_Uq2vP389P1tX0DA9Va1ZtarhElwNjZcGdd0pA6rT5QchhUYlfQmmVrJWmgnpTK19w7ApZC3rU_LhsHdM8feMebK7kAH73g0Y52y5kkJovgeXBxBSzDlhZ8cUdi79s5zZvVdbvNpHr2Xg3XHz3O7QP-JHkQV4fwC2YbP9ExLaNkTY4s4Kzaw0VrLyQsH0AcOi4S5gshkCDoC-jMBkfQxPnfAAMOSSOg</recordid><startdate>20051209</startdate><enddate>20051209</enddate><creator>Gulshan, Kailash</creator><creator>Rovinsky, Sherry A.</creator><creator>Coleman, Sean T.</creator><creator>Moye-Rowley, W. Scott</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope></search><sort><creationdate>20051209</creationdate><title>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</title><author>Gulshan, Kailash ; Rovinsky, Sherry A. ; Coleman, Sean T. ; Moye-Rowley, W. Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b96b7514ca3c5d49e83f79c7f89252428e74dddd0764378024a938d50e583f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Binding Sites</topic><topic>Cell Nucleus - chemistry</topic><topic>Cysteine - analysis</topic><topic>Cytoplasm - chemistry</topic><topic>Deoxyribonuclease I</topic><topic>Disulfides - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Footprinting</topic><topic>Gene Deletion</topic><topic>Gene Expression - drug effects</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Mediator Complex</topic><topic>Membrane Proteins - genetics</topic><topic>Mutagenesis</topic><topic>Oxidants - pharmacology</topic><topic>Oxidative Stress</topic><topic>Peptide Fragments - chemistry</topic><topic>Polymerase Chain Reaction</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Folding</topic><topic>Recombinant Fusion Proteins</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - analysis</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Structure-Activity Relationship</topic><topic>Thioredoxins - genetics</topic><topic>Transcription Factors - analysis</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription Factors - physiology</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulshan, Kailash</creatorcontrib><creatorcontrib>Rovinsky, Sherry A.</creatorcontrib><creatorcontrib>Coleman, Sean T.</creatorcontrib><creatorcontrib>Moye-Rowley, W. Scott</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulshan, Kailash</au><au>Rovinsky, Sherry A.</au><au>Coleman, Sean T.</au><au>Moye-Rowley, W. Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-12-09</date><risdate>2005</risdate><volume>280</volume><issue>49</issue><spage>40524</spage><epage>40533</epage><pages>40524-40533</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H2O2 exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H2O2 tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H2O2 in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H2O2 is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16219769</pmid><doi>10.1074/jbc.M504716200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2005-12, Vol.280 (49), p.40524-40533 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_17422814 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Binding Sites Cell Nucleus - chemistry Cysteine - analysis Cytoplasm - chemistry Deoxyribonuclease I Disulfides - chemistry DNA - metabolism DNA Footprinting Gene Deletion Gene Expression - drug effects Hydrogen Peroxide - pharmacology Mediator Complex Membrane Proteins - genetics Mutagenesis Oxidants - pharmacology Oxidative Stress Peptide Fragments - chemistry Polymerase Chain Reaction Promoter Regions, Genetic - genetics Protein Folding Recombinant Fusion Proteins RNA Polymerase II - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - analysis Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Structure-Activity Relationship Thioredoxins - genetics Transcription Factors - analysis Transcription Factors - chemistry Transcription Factors - metabolism Transcription Factors - physiology Transcription, Genetic - physiology |
title | Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidant-specific%20Folding%20of%20Yap1p%20Regulates%20Both%20Transcriptional%20Activation%20and%20Nuclear%20Localization&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Gulshan,%20Kailash&rft.date=2005-12-09&rft.volume=280&rft.issue=49&rft.spage=40524&rft.epage=40533&rft.pages=40524-40533&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M504716200&rft_dat=%3Cproquest_cross%3E17422814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17422814&rft_id=info:pmid/16219769&rft_els_id=S0021925820590169&rfr_iscdi=true |