Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake

The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2016, Vol.209 (1), p.436-446
Hauptverfasser: Klein, Tamir, Rotenberg, Eyal, Tatarinov, Fyodor, Yakir, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 1
container_start_page 436
container_title The New phytologist
container_volume 209
creator Klein, Tamir
Rotenberg, Eyal
Tatarinov, Fyodor
Yakir, Dan
description The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.
doi_str_mv 10.1111/nph.13597
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738818088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.209.1.436</jstor_id><sourcerecordid>newphytologist.209.1.436</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3767-4c0581ca71447833d2078e823de120741ea847ce794948d05acf688b0a3cab403</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxi0EokvhwAuAJS5c0vpf_OdYrYAiVRQJKnGzvM6kzZLYwU66yo1H4Bl5ErzdUiHmMiPN7xt9mg-hl5Sc0FKnYbw5obw26hFaUSFNpSlXj9GKEKYrKeS3I_Qs5y0hxNSSPUVHTHJCa2NWaDjLOfrOTV0MeAPTDiDg7Ebc9nH3--evBlJ3Cw12ocHQNAv28dalzgUP_2wHcHlOMECYMo4tbmOCPGHvQhwXvL5keB4n9x2eoyet6zO8uO_H6Or9u6_r8-ri8sPH9dlF1XIlVSU8qTX1TlEhlOa8YURp0Iw3QMsoKDgtlAdlhBG6IbXzrdR6Qxz3biMIP0ZvD3fHFH_MxYoduuyh712AOGdLFdeaaqJ1Qd_8h27jnEJxt6eUMbJ8tFCv7ql5M0Bjx9QNLi327yMLcHoAdl0Py8OeErtPyJaE7F1C9tPn87uhKKqDYpunmB4UAXbjzTLFPl53xQwjxlIr-N7C6wPfumjddeqyvfrCCJWEUGIkq_kfyhmeIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737996146</pqid></control><display><type>article</type><title>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Klein, Tamir ; Rotenberg, Eyal ; Tatarinov, Fyodor ; Yakir, Dan</creator><creatorcontrib>Klein, Tamir ; Rotenberg, Eyal ; Tatarinov, Fyodor ; Yakir, Dan</creatorcontrib><description>The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13597</identifier><identifier>PMID: 26301599</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>biosphere ; carbon ; Carbon - metabolism ; carbon assimilation ; carbon dioxide ; Carbon Dioxide - metabolism ; Carbon Isotopes ; Carbon Sequestration ; carbon sinks ; coniferous forests ; Ecosystem ; ecosystem respiration ; eddy covariance ; forest canopy ; Forests ; gas exchange ; gross primary productivity (GPP) ; isotopes ; Israel ; leaf gas‐exchange ; leaves ; Methods ; Photosynthesis ; Pinus - metabolism ; Plant Leaves - metabolism ; Plant Transpiration ; primary productivity ; sap ; sap flow ; transpiration ; Trees ; vapor pressure deficit ; Water - metabolism ; water use efficiency ; water‐use efficiency (WUE) ; δ13C</subject><ispartof>The New phytologist, 2016, Vol.209 (1), p.436-446</ispartof><rights>2015 New Phytologist Trust</rights><rights>2015 The Authors. New Phytologist © 2015 New Phytologist Trust</rights><rights>2015 The Authors. New Phytologist © 2015 New Phytologist Trust.</rights><rights>Copyright © 2015 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.209.1.436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.209.1.436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26301599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Tamir</creatorcontrib><creatorcontrib>Rotenberg, Eyal</creatorcontrib><creatorcontrib>Tatarinov, Fyodor</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><title>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.</description><subject>biosphere</subject><subject>carbon</subject><subject>Carbon - metabolism</subject><subject>carbon assimilation</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Isotopes</subject><subject>Carbon Sequestration</subject><subject>carbon sinks</subject><subject>coniferous forests</subject><subject>Ecosystem</subject><subject>ecosystem respiration</subject><subject>eddy covariance</subject><subject>forest canopy</subject><subject>Forests</subject><subject>gas exchange</subject><subject>gross primary productivity (GPP)</subject><subject>isotopes</subject><subject>Israel</subject><subject>leaf gas‐exchange</subject><subject>leaves</subject><subject>Methods</subject><subject>Photosynthesis</subject><subject>Pinus - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Transpiration</subject><subject>primary productivity</subject><subject>sap</subject><subject>sap flow</subject><subject>transpiration</subject><subject>Trees</subject><subject>vapor pressure deficit</subject><subject>Water - metabolism</subject><subject>water use efficiency</subject><subject>water‐use efficiency (WUE)</subject><subject>δ13C</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9u1DAQxi0EokvhwAuAJS5c0vpf_OdYrYAiVRQJKnGzvM6kzZLYwU66yo1H4Bl5ErzdUiHmMiPN7xt9mg-hl5Sc0FKnYbw5obw26hFaUSFNpSlXj9GKEKYrKeS3I_Qs5y0hxNSSPUVHTHJCa2NWaDjLOfrOTV0MeAPTDiDg7Ebc9nH3--evBlJ3Cw12ocHQNAv28dalzgUP_2wHcHlOMECYMo4tbmOCPGHvQhwXvL5keB4n9x2eoyet6zO8uO_H6Or9u6_r8-ri8sPH9dlF1XIlVSU8qTX1TlEhlOa8YURp0Iw3QMsoKDgtlAdlhBG6IbXzrdR6Qxz3biMIP0ZvD3fHFH_MxYoduuyh712AOGdLFdeaaqJ1Qd_8h27jnEJxt6eUMbJ8tFCv7ql5M0Bjx9QNLi327yMLcHoAdl0Py8OeErtPyJaE7F1C9tPn87uhKKqDYpunmB4UAXbjzTLFPl53xQwjxlIr-N7C6wPfumjddeqyvfrCCJWEUGIkq_kfyhmeIw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Klein, Tamir</creator><creator>Rotenberg, Eyal</creator><creator>Tatarinov, Fyodor</creator><creator>Yakir, Dan</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2016</creationdate><title>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</title><author>Klein, Tamir ; Rotenberg, Eyal ; Tatarinov, Fyodor ; Yakir, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3767-4c0581ca71447833d2078e823de120741ea847ce794948d05acf688b0a3cab403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>biosphere</topic><topic>carbon</topic><topic>Carbon - metabolism</topic><topic>carbon assimilation</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Isotopes</topic><topic>Carbon Sequestration</topic><topic>carbon sinks</topic><topic>coniferous forests</topic><topic>Ecosystem</topic><topic>ecosystem respiration</topic><topic>eddy covariance</topic><topic>forest canopy</topic><topic>Forests</topic><topic>gas exchange</topic><topic>gross primary productivity (GPP)</topic><topic>isotopes</topic><topic>Israel</topic><topic>leaf gas‐exchange</topic><topic>leaves</topic><topic>Methods</topic><topic>Photosynthesis</topic><topic>Pinus - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Transpiration</topic><topic>primary productivity</topic><topic>sap</topic><topic>sap flow</topic><topic>transpiration</topic><topic>Trees</topic><topic>vapor pressure deficit</topic><topic>Water - metabolism</topic><topic>water use efficiency</topic><topic>water‐use efficiency (WUE)</topic><topic>δ13C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Tamir</creatorcontrib><creatorcontrib>Rotenberg, Eyal</creatorcontrib><creatorcontrib>Tatarinov, Fyodor</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Tamir</au><au>Rotenberg, Eyal</au><au>Tatarinov, Fyodor</au><au>Yakir, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016</date><risdate>2016</risdate><volume>209</volume><issue>1</issue><spage>436</spage><epage>446</epage><pages>436-446</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>26301599</pmid><doi>10.1111/nph.13597</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2016, Vol.209 (1), p.436-446
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1738818088
source Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects biosphere
carbon
Carbon - metabolism
carbon assimilation
carbon dioxide
Carbon Dioxide - metabolism
Carbon Isotopes
Carbon Sequestration
carbon sinks
coniferous forests
Ecosystem
ecosystem respiration
eddy covariance
forest canopy
Forests
gas exchange
gross primary productivity (GPP)
isotopes
Israel
leaf gas‐exchange
leaves
Methods
Photosynthesis
Pinus - metabolism
Plant Leaves - metabolism
Plant Transpiration
primary productivity
sap
sap flow
transpiration
Trees
vapor pressure deficit
Water - metabolism
water use efficiency
water‐use efficiency (WUE)
δ13C
title Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20between%20sap%20flow%E2%80%90derived%20and%20eddy%20covariance%E2%80%90derived%20measurements%20of%20forest%20canopy%20CO2%20uptake&rft.jtitle=The%20New%20phytologist&rft.au=Klein,%20Tamir&rft.date=2016&rft.volume=209&rft.issue=1&rft.spage=436&rft.epage=446&rft.pages=436-446&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13597&rft_dat=%3Cjstor_proqu%3Enewphytologist.209.1.436%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1737996146&rft_id=info:pmid/26301599&rft_jstor_id=newphytologist.209.1.436&rfr_iscdi=true