Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake
The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as s...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2016, Vol.209 (1), p.436-446 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 1 |
container_start_page | 436 |
container_title | The New phytologist |
container_volume | 209 |
creator | Klein, Tamir Rotenberg, Eyal Tatarinov, Fyodor Yakir, Dan |
description | The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations. |
doi_str_mv | 10.1111/nph.13597 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738818088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.209.1.436</jstor_id><sourcerecordid>newphytologist.209.1.436</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3767-4c0581ca71447833d2078e823de120741ea847ce794948d05acf688b0a3cab403</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxi0EokvhwAuAJS5c0vpf_OdYrYAiVRQJKnGzvM6kzZLYwU66yo1H4Bl5ErzdUiHmMiPN7xt9mg-hl5Sc0FKnYbw5obw26hFaUSFNpSlXj9GKEKYrKeS3I_Qs5y0hxNSSPUVHTHJCa2NWaDjLOfrOTV0MeAPTDiDg7Ebc9nH3--evBlJ3Cw12ocHQNAv28dalzgUP_2wHcHlOMECYMo4tbmOCPGHvQhwXvL5keB4n9x2eoyet6zO8uO_H6Or9u6_r8-ri8sPH9dlF1XIlVSU8qTX1TlEhlOa8YURp0Iw3QMsoKDgtlAdlhBG6IbXzrdR6Qxz3biMIP0ZvD3fHFH_MxYoduuyh712AOGdLFdeaaqJ1Qd_8h27jnEJxt6eUMbJ8tFCv7ql5M0Bjx9QNLi327yMLcHoAdl0Py8OeErtPyJaE7F1C9tPn87uhKKqDYpunmB4UAXbjzTLFPl53xQwjxlIr-N7C6wPfumjddeqyvfrCCJWEUGIkq_kfyhmeIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737996146</pqid></control><display><type>article</type><title>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Klein, Tamir ; Rotenberg, Eyal ; Tatarinov, Fyodor ; Yakir, Dan</creator><creatorcontrib>Klein, Tamir ; Rotenberg, Eyal ; Tatarinov, Fyodor ; Yakir, Dan</creatorcontrib><description>The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13597</identifier><identifier>PMID: 26301599</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>biosphere ; carbon ; Carbon - metabolism ; carbon assimilation ; carbon dioxide ; Carbon Dioxide - metabolism ; Carbon Isotopes ; Carbon Sequestration ; carbon sinks ; coniferous forests ; Ecosystem ; ecosystem respiration ; eddy covariance ; forest canopy ; Forests ; gas exchange ; gross primary productivity (GPP) ; isotopes ; Israel ; leaf gas‐exchange ; leaves ; Methods ; Photosynthesis ; Pinus - metabolism ; Plant Leaves - metabolism ; Plant Transpiration ; primary productivity ; sap ; sap flow ; transpiration ; Trees ; vapor pressure deficit ; Water - metabolism ; water use efficiency ; water‐use efficiency (WUE) ; δ13C</subject><ispartof>The New phytologist, 2016, Vol.209 (1), p.436-446</ispartof><rights>2015 New Phytologist Trust</rights><rights>2015 The Authors. New Phytologist © 2015 New Phytologist Trust</rights><rights>2015 The Authors. New Phytologist © 2015 New Phytologist Trust.</rights><rights>Copyright © 2015 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.209.1.436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.209.1.436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26301599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Tamir</creatorcontrib><creatorcontrib>Rotenberg, Eyal</creatorcontrib><creatorcontrib>Tatarinov, Fyodor</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><title>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.</description><subject>biosphere</subject><subject>carbon</subject><subject>Carbon - metabolism</subject><subject>carbon assimilation</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Isotopes</subject><subject>Carbon Sequestration</subject><subject>carbon sinks</subject><subject>coniferous forests</subject><subject>Ecosystem</subject><subject>ecosystem respiration</subject><subject>eddy covariance</subject><subject>forest canopy</subject><subject>Forests</subject><subject>gas exchange</subject><subject>gross primary productivity (GPP)</subject><subject>isotopes</subject><subject>Israel</subject><subject>leaf gas‐exchange</subject><subject>leaves</subject><subject>Methods</subject><subject>Photosynthesis</subject><subject>Pinus - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Transpiration</subject><subject>primary productivity</subject><subject>sap</subject><subject>sap flow</subject><subject>transpiration</subject><subject>Trees</subject><subject>vapor pressure deficit</subject><subject>Water - metabolism</subject><subject>water use efficiency</subject><subject>water‐use efficiency (WUE)</subject><subject>δ13C</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9u1DAQxi0EokvhwAuAJS5c0vpf_OdYrYAiVRQJKnGzvM6kzZLYwU66yo1H4Bl5ErzdUiHmMiPN7xt9mg-hl5Sc0FKnYbw5obw26hFaUSFNpSlXj9GKEKYrKeS3I_Qs5y0hxNSSPUVHTHJCa2NWaDjLOfrOTV0MeAPTDiDg7Ebc9nH3--evBlJ3Cw12ocHQNAv28dalzgUP_2wHcHlOMECYMo4tbmOCPGHvQhwXvL5keB4n9x2eoyet6zO8uO_H6Or9u6_r8-ri8sPH9dlF1XIlVSU8qTX1TlEhlOa8YURp0Iw3QMsoKDgtlAdlhBG6IbXzrdR6Qxz3biMIP0ZvD3fHFH_MxYoduuyh712AOGdLFdeaaqJ1Qd_8h27jnEJxt6eUMbJ8tFCv7ql5M0Bjx9QNLi327yMLcHoAdl0Py8OeErtPyJaE7F1C9tPn87uhKKqDYpunmB4UAXbjzTLFPl53xQwjxlIr-N7C6wPfumjddeqyvfrCCJWEUGIkq_kfyhmeIw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Klein, Tamir</creator><creator>Rotenberg, Eyal</creator><creator>Tatarinov, Fyodor</creator><creator>Yakir, Dan</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2016</creationdate><title>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</title><author>Klein, Tamir ; Rotenberg, Eyal ; Tatarinov, Fyodor ; Yakir, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3767-4c0581ca71447833d2078e823de120741ea847ce794948d05acf688b0a3cab403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>biosphere</topic><topic>carbon</topic><topic>Carbon - metabolism</topic><topic>carbon assimilation</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Isotopes</topic><topic>Carbon Sequestration</topic><topic>carbon sinks</topic><topic>coniferous forests</topic><topic>Ecosystem</topic><topic>ecosystem respiration</topic><topic>eddy covariance</topic><topic>forest canopy</topic><topic>Forests</topic><topic>gas exchange</topic><topic>gross primary productivity (GPP)</topic><topic>isotopes</topic><topic>Israel</topic><topic>leaf gas‐exchange</topic><topic>leaves</topic><topic>Methods</topic><topic>Photosynthesis</topic><topic>Pinus - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Transpiration</topic><topic>primary productivity</topic><topic>sap</topic><topic>sap flow</topic><topic>transpiration</topic><topic>Trees</topic><topic>vapor pressure deficit</topic><topic>Water - metabolism</topic><topic>water use efficiency</topic><topic>water‐use efficiency (WUE)</topic><topic>δ13C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Tamir</creatorcontrib><creatorcontrib>Rotenberg, Eyal</creatorcontrib><creatorcontrib>Tatarinov, Fyodor</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Tamir</au><au>Rotenberg, Eyal</au><au>Tatarinov, Fyodor</au><au>Yakir, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016</date><risdate>2016</risdate><volume>209</volume><issue>1</issue><spage>436</spage><epage>446</epage><pages>436-446</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water‐use efficiency inferred from carbon isotope analysis (GPPSF) has been proposed, but not tested against eddy covariance‐based estimates (GPPEC). Here we take advantage of parallel measurements using the two approaches at a semi‐arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF = 0.99 × GPPEC, r² = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m⁻² yr⁻¹). Both methods showed that GPP ranged between 1 and 8 g C m⁻² d⁻¹, and the GPPSF/GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree‐ and canopy‐scale rates of CO₂ uptake, providing constraints and greatly extending current GPPEC estimations.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>26301599</pmid><doi>10.1111/nph.13597</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2016, Vol.209 (1), p.436-446 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1738818088 |
source | Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | biosphere carbon Carbon - metabolism carbon assimilation carbon dioxide Carbon Dioxide - metabolism Carbon Isotopes Carbon Sequestration carbon sinks coniferous forests Ecosystem ecosystem respiration eddy covariance forest canopy Forests gas exchange gross primary productivity (GPP) isotopes Israel leaf gas‐exchange leaves Methods Photosynthesis Pinus - metabolism Plant Leaves - metabolism Plant Transpiration primary productivity sap sap flow transpiration Trees vapor pressure deficit Water - metabolism water use efficiency water‐use efficiency (WUE) δ13C |
title | Association between sap flow‐derived and eddy covariance‐derived measurements of forest canopy CO2 uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20between%20sap%20flow%E2%80%90derived%20and%20eddy%20covariance%E2%80%90derived%20measurements%20of%20forest%20canopy%20CO2%20uptake&rft.jtitle=The%20New%20phytologist&rft.au=Klein,%20Tamir&rft.date=2016&rft.volume=209&rft.issue=1&rft.spage=436&rft.epage=446&rft.pages=436-446&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13597&rft_dat=%3Cjstor_proqu%3Enewphytologist.209.1.436%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1737996146&rft_id=info:pmid/26301599&rft_jstor_id=newphytologist.209.1.436&rfr_iscdi=true |