Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization

We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-11, Vol.143 (20), p.204301-204301
Hauptverfasser: Sharples, Thomas R, Luxford, Thomas F M, Townsend, Dave, McKendrick, Kenneth G, Costen, Matthew L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204301
container_issue 20
container_start_page 204301
container_title The Journal of chemical physics
container_volume 143
creator Sharples, Thomas R
Luxford, Thomas F M
Townsend, Dave
McKendrick, Kenneth G
Costen, Matthew L
description We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.
doi_str_mv 10.1063/1.4935962
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738814864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738814864</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-b87f69916e1eaf69e848adc9586732db0cce5fe6236c3121952af03089c4ab2d3</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0kREthwAaQh62qFH8Sx2ZWla9UUQnBOHIcpzJy4mA7gzJjLeyHNRGgMHrv6h6dwQXgDKMFRoxe4EUqaCYYOQBjjLhIcibQCByH8IIQwjlJj8CIMEZykdExeH90UUbjWmntDppWWxmiUTAoGaP2pt1CV8OHzXQ5JbPPj-l8NoNzuPSX8MrUtfa6jUZaqLwLAQatvlUByraC_l88xG1vpYeNawa-b2DnhmjefvoTcFhLG_Tp_k7A88310-ouWW9u71fLddLhFMek5HnNhMBMYy2HT_OUy0qJjLOckqpESums1oxQpigmWGRE1ogOC6hUlqSiEzD99XbevfY6xKIxQWlrZatdHwqcU85xylk6oOd7tC8bXRWdN430u-JvNvoFVu1tPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738814864</pqid></control><display><type>article</type><title>Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sharples, Thomas R ; Luxford, Thomas F M ; Townsend, Dave ; McKendrick, Kenneth G ; Costen, Matthew L</creator><creatorcontrib>Sharples, Thomas R ; Luxford, Thomas F M ; Townsend, Dave ; McKendrick, Kenneth G ; Costen, Matthew L</creatorcontrib><description>We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.</description><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4935962</identifier><identifier>PMID: 26627953</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2015-11, Vol.143 (20), p.204301-204301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26627953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharples, Thomas R</creatorcontrib><creatorcontrib>Luxford, Thomas F M</creatorcontrib><creatorcontrib>Townsend, Dave</creatorcontrib><creatorcontrib>McKendrick, Kenneth G</creatorcontrib><creatorcontrib>Costen, Matthew L</creatorcontrib><title>Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.</description><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAURS0kREthwAaQh62qFH8Sx2ZWla9UUQnBOHIcpzJy4mA7gzJjLeyHNRGgMHrv6h6dwQXgDKMFRoxe4EUqaCYYOQBjjLhIcibQCByH8IIQwjlJj8CIMEZykdExeH90UUbjWmntDppWWxmiUTAoGaP2pt1CV8OHzXQ5JbPPj-l8NoNzuPSX8MrUtfa6jUZaqLwLAQatvlUByraC_l88xG1vpYeNawa-b2DnhmjefvoTcFhLG_Tp_k7A88310-ouWW9u71fLddLhFMek5HnNhMBMYy2HT_OUy0qJjLOckqpESums1oxQpigmWGRE1ogOC6hUlqSiEzD99XbevfY6xKIxQWlrZatdHwqcU85xylk6oOd7tC8bXRWdN430u-JvNvoFVu1tPA</recordid><startdate>20151128</startdate><enddate>20151128</enddate><creator>Sharples, Thomas R</creator><creator>Luxford, Thomas F M</creator><creator>Townsend, Dave</creator><creator>McKendrick, Kenneth G</creator><creator>Costen, Matthew L</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20151128</creationdate><title>Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization</title><author>Sharples, Thomas R ; Luxford, Thomas F M ; Townsend, Dave ; McKendrick, Kenneth G ; Costen, Matthew L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-b87f69916e1eaf69e848adc9586732db0cce5fe6236c3121952af03089c4ab2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharples, Thomas R</creatorcontrib><creatorcontrib>Luxford, Thomas F M</creatorcontrib><creatorcontrib>Townsend, Dave</creatorcontrib><creatorcontrib>McKendrick, Kenneth G</creatorcontrib><creatorcontrib>Costen, Matthew L</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharples, Thomas R</au><au>Luxford, Thomas F M</au><au>Townsend, Dave</au><au>McKendrick, Kenneth G</au><au>Costen, Matthew L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-11-28</date><risdate>2015</risdate><volume>143</volume><issue>20</issue><spage>204301</spage><epage>204301</epage><pages>204301-204301</pages><eissn>1089-7690</eissn><abstract>We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.</abstract><cop>United States</cop><pmid>26627953</pmid><doi>10.1063/1.4935962</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1089-7690
ispartof The Journal of chemical physics, 2015-11, Vol.143 (20), p.204301-204301
issn 1089-7690
language eng
recordid cdi_proquest_miscellaneous_1738814864
source AIP Journals Complete; Alma/SFX Local Collection
title Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotationally%20inelastic%20scattering%20of%20NO(A(2)%CE%A3(+))%20+%20Ar:%20Differential%20cross%20sections%20and%20rotational%20angular%20momentum%20polarization&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sharples,%20Thomas%20R&rft.date=2015-11-28&rft.volume=143&rft.issue=20&rft.spage=204301&rft.epage=204301&rft.pages=204301-204301&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4935962&rft_dat=%3Cproquest_pubme%3E1738814864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738814864&rft_id=info:pmid/26627953&rfr_iscdi=true