Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem

Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Theory and Computation, 5(3):491-499 5(3):491-499, 2009-03, Vol.5 (3), p.491-499
Hauptverfasser: Nichols, Patrick, Govind, Niranjan, Bylaska, Eric J, de Jong, W. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 3
container_start_page 491
container_title Journal of Chemical Theory and Computation, 5(3):491-499
container_volume 5
creator Nichols, Patrick
Govind, Niranjan
Bylaska, Eric J
de Jong, W. A
description Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.
doi_str_mv 10.1021/ct8002892
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738483774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738483774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgSgUBl4AmQEJhoIvuTgjVFCQCkUUxGjZzonqKk1K7BTxBsw8Ik9CopROLPYZPv_y-RE6ouSCEkYvjReEMJGwLbRHwyAZJBGLtjczFT2079ycEM4DxndRj0VR-zDaQ-ORqp2zqsDXylmHp-CxKlL8lKsCPtQK8DPkytuVdd4aPF3a4ufre1Jp6_ED-FmZOmwL_Pg2nMHiAO1kKndwuL776PX25mV4NxhPRvfDq_FA8YD69kxjCpHShARJmgmtSTuz1LBMqZDFKYQ60JqHwACAGxUJosE0lMWU8z466XLL5lPSGevBzExZFGC8TEIqeNiYs84sq_K9BuflwjoDebtXWTtJYy4CweM4aOh5R01VOldBJpeVXajqU1Ii257kpuDGHq9ja72AdCP_Gm3AaQeUcXJe1lXRNPFP0C9GOIHk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738483774</pqid></control><display><type>article</type><title>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</title><source>American Chemical Society Journals</source><creator>Nichols, Patrick ; Govind, Niranjan ; Bylaska, Eric J ; de Jong, W. A</creator><creatorcontrib>Nichols, Patrick ; Govind, Niranjan ; Bylaska, Eric J ; de Jong, W. A ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct8002892</identifier><identifier>PMID: 26610216</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>APPROXIMATIONS ; BISMUTH ; BROMINE ; DENSITY FUNCTIONAL METHOD ; DIRAC EQUATION ; ELECTRONIC STRUCTURE ; Environmental Molecular Sciences Laboratory ; GOLD ; GOLD HYDRIDES ; HALIDES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IODINE ; L-S COUPLING ; NWChem ; Quantum Electronic Structure ; Relativistic Density Functional Theory</subject><ispartof>Journal of Chemical Theory and Computation, 5(3):491-499, 2009-03, Vol.5 (3), p.491-499</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</citedby><cites>FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct8002892$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct8002892$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26610216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/951835$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Patrick</creatorcontrib><creatorcontrib>Govind, Niranjan</creatorcontrib><creatorcontrib>Bylaska, Eric J</creatorcontrib><creatorcontrib>de Jong, W. A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</title><title>Journal of Chemical Theory and Computation, 5(3):491-499</title><addtitle>J. Chem. Theory Comput</addtitle><description>Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.</description><subject>APPROXIMATIONS</subject><subject>BISMUTH</subject><subject>BROMINE</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>DIRAC EQUATION</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>GOLD</subject><subject>GOLD HYDRIDES</subject><subject>HALIDES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IODINE</subject><subject>L-S COUPLING</subject><subject>NWChem</subject><subject>Quantum Electronic Structure</subject><subject>Relativistic Density Functional Theory</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0LtOwzAUBmALgSgUBl4AmQEJhoIvuTgjVFCQCkUUxGjZzonqKk1K7BTxBsw8Ik9CopROLPYZPv_y-RE6ouSCEkYvjReEMJGwLbRHwyAZJBGLtjczFT2079ycEM4DxndRj0VR-zDaQ-ORqp2zqsDXylmHp-CxKlL8lKsCPtQK8DPkytuVdd4aPF3a4ufre1Jp6_ED-FmZOmwL_Pg2nMHiAO1kKndwuL776PX25mV4NxhPRvfDq_FA8YD69kxjCpHShARJmgmtSTuz1LBMqZDFKYQ60JqHwACAGxUJosE0lMWU8z466XLL5lPSGevBzExZFGC8TEIqeNiYs84sq_K9BuflwjoDebtXWTtJYy4CweM4aOh5R01VOldBJpeVXajqU1Ii257kpuDGHq9ja72AdCP_Gm3AaQeUcXJe1lXRNPFP0C9GOIHk</recordid><startdate>20090310</startdate><enddate>20090310</enddate><creator>Nichols, Patrick</creator><creator>Govind, Niranjan</creator><creator>Bylaska, Eric J</creator><creator>de Jong, W. A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090310</creationdate><title>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</title><author>Nichols, Patrick ; Govind, Niranjan ; Bylaska, Eric J ; de Jong, W. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APPROXIMATIONS</topic><topic>BISMUTH</topic><topic>BROMINE</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>DIRAC EQUATION</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>GOLD</topic><topic>GOLD HYDRIDES</topic><topic>HALIDES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IODINE</topic><topic>L-S COUPLING</topic><topic>NWChem</topic><topic>Quantum Electronic Structure</topic><topic>Relativistic Density Functional Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Patrick</creatorcontrib><creatorcontrib>Govind, Niranjan</creatorcontrib><creatorcontrib>Bylaska, Eric J</creatorcontrib><creatorcontrib>de Jong, W. A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Chemical Theory and Computation, 5(3):491-499</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Patrick</au><au>Govind, Niranjan</au><au>Bylaska, Eric J</au><au>de Jong, W. A</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</atitle><jtitle>Journal of Chemical Theory and Computation, 5(3):491-499</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2009-03-10</date><risdate>2009</risdate><volume>5</volume><issue>3</issue><spage>491</spage><epage>499</epage><pages>491-499</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26610216</pmid><doi>10.1021/ct8002892</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of Chemical Theory and Computation, 5(3):491-499, 2009-03, Vol.5 (3), p.491-499
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1738483774
source American Chemical Society Journals
subjects APPROXIMATIONS
BISMUTH
BROMINE
DENSITY FUNCTIONAL METHOD
DIRAC EQUATION
ELECTRONIC STRUCTURE
Environmental Molecular Sciences Laboratory
GOLD
GOLD HYDRIDES
HALIDES
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
IODINE
L-S COUPLING
NWChem
Quantum Electronic Structure
Relativistic Density Functional Theory
title Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Basis%20Set%20and%20Planewave%20Relativistic%20Spin%E2%88%92Orbit%20Methods%20in%20NWChem&rft.jtitle=Journal%20of%20Chemical%20Theory%20and%20Computation,%205(3):491-499&rft.au=Nichols,%20Patrick&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2009-03-10&rft.volume=5&rft.issue=3&rft.spage=491&rft.epage=499&rft.pages=491-499&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct8002892&rft_dat=%3Cproquest_osti_%3E1738483774%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738483774&rft_id=info:pmid/26610216&rfr_iscdi=true