Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem
Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA)...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Theory and Computation, 5(3):491-499 5(3):491-499, 2009-03, Vol.5 (3), p.491-499 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 3 |
container_start_page | 491 |
container_title | Journal of Chemical Theory and Computation, 5(3):491-499 |
container_volume | 5 |
creator | Nichols, Patrick Govind, Niranjan Bylaska, Eric J de Jong, W. A |
description | Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations. |
doi_str_mv | 10.1021/ct8002892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738483774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738483774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgSgUBl4AmQEJhoIvuTgjVFCQCkUUxGjZzonqKk1K7BTxBsw8Ik9CopROLPYZPv_y-RE6ouSCEkYvjReEMJGwLbRHwyAZJBGLtjczFT2079ycEM4DxndRj0VR-zDaQ-ORqp2zqsDXylmHp-CxKlL8lKsCPtQK8DPkytuVdd4aPF3a4ufre1Jp6_ED-FmZOmwL_Pg2nMHiAO1kKndwuL776PX25mV4NxhPRvfDq_FA8YD69kxjCpHShARJmgmtSTuz1LBMqZDFKYQ60JqHwACAGxUJosE0lMWU8z466XLL5lPSGevBzExZFGC8TEIqeNiYs84sq_K9BuflwjoDebtXWTtJYy4CweM4aOh5R01VOldBJpeVXajqU1Ii257kpuDGHq9ja72AdCP_Gm3AaQeUcXJe1lXRNPFP0C9GOIHk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738483774</pqid></control><display><type>article</type><title>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</title><source>American Chemical Society Journals</source><creator>Nichols, Patrick ; Govind, Niranjan ; Bylaska, Eric J ; de Jong, W. A</creator><creatorcontrib>Nichols, Patrick ; Govind, Niranjan ; Bylaska, Eric J ; de Jong, W. A ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct8002892</identifier><identifier>PMID: 26610216</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>APPROXIMATIONS ; BISMUTH ; BROMINE ; DENSITY FUNCTIONAL METHOD ; DIRAC EQUATION ; ELECTRONIC STRUCTURE ; Environmental Molecular Sciences Laboratory ; GOLD ; GOLD HYDRIDES ; HALIDES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IODINE ; L-S COUPLING ; NWChem ; Quantum Electronic Structure ; Relativistic Density Functional Theory</subject><ispartof>Journal of Chemical Theory and Computation, 5(3):491-499, 2009-03, Vol.5 (3), p.491-499</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</citedby><cites>FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct8002892$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct8002892$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26610216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/951835$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Patrick</creatorcontrib><creatorcontrib>Govind, Niranjan</creatorcontrib><creatorcontrib>Bylaska, Eric J</creatorcontrib><creatorcontrib>de Jong, W. A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</title><title>Journal of Chemical Theory and Computation, 5(3):491-499</title><addtitle>J. Chem. Theory Comput</addtitle><description>Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.</description><subject>APPROXIMATIONS</subject><subject>BISMUTH</subject><subject>BROMINE</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>DIRAC EQUATION</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>GOLD</subject><subject>GOLD HYDRIDES</subject><subject>HALIDES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IODINE</subject><subject>L-S COUPLING</subject><subject>NWChem</subject><subject>Quantum Electronic Structure</subject><subject>Relativistic Density Functional Theory</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0LtOwzAUBmALgSgUBl4AmQEJhoIvuTgjVFCQCkUUxGjZzonqKk1K7BTxBsw8Ik9CopROLPYZPv_y-RE6ouSCEkYvjReEMJGwLbRHwyAZJBGLtjczFT2079ycEM4DxndRj0VR-zDaQ-ORqp2zqsDXylmHp-CxKlL8lKsCPtQK8DPkytuVdd4aPF3a4ufre1Jp6_ED-FmZOmwL_Pg2nMHiAO1kKndwuL776PX25mV4NxhPRvfDq_FA8YD69kxjCpHShARJmgmtSTuz1LBMqZDFKYQ60JqHwACAGxUJosE0lMWU8z466XLL5lPSGevBzExZFGC8TEIqeNiYs84sq_K9BuflwjoDebtXWTtJYy4CweM4aOh5R01VOldBJpeVXajqU1Ii257kpuDGHq9ja72AdCP_Gm3AaQeUcXJe1lXRNPFP0C9GOIHk</recordid><startdate>20090310</startdate><enddate>20090310</enddate><creator>Nichols, Patrick</creator><creator>Govind, Niranjan</creator><creator>Bylaska, Eric J</creator><creator>de Jong, W. A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090310</creationdate><title>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</title><author>Nichols, Patrick ; Govind, Niranjan ; Bylaska, Eric J ; de Jong, W. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-a34d71e6ab0049df8bb0ab002dc2faa527de5b4bb35e2eee3ca680becdf827133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APPROXIMATIONS</topic><topic>BISMUTH</topic><topic>BROMINE</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>DIRAC EQUATION</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>GOLD</topic><topic>GOLD HYDRIDES</topic><topic>HALIDES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IODINE</topic><topic>L-S COUPLING</topic><topic>NWChem</topic><topic>Quantum Electronic Structure</topic><topic>Relativistic Density Functional Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Patrick</creatorcontrib><creatorcontrib>Govind, Niranjan</creatorcontrib><creatorcontrib>Bylaska, Eric J</creatorcontrib><creatorcontrib>de Jong, W. A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Chemical Theory and Computation, 5(3):491-499</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Patrick</au><au>Govind, Niranjan</au><au>Bylaska, Eric J</au><au>de Jong, W. A</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem</atitle><jtitle>Journal of Chemical Theory and Computation, 5(3):491-499</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2009-03-10</date><risdate>2009</risdate><volume>5</volume><issue>3</issue><spage>491</spage><epage>499</epage><pages>491-499</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Relativistic spin−orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin−orbit pseudopotentials that are directly generated from the atomic Dirac−Kohn−Sham wave functions or atomic ZORA-Kohn−Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin−orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26610216</pmid><doi>10.1021/ct8002892</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of Chemical Theory and Computation, 5(3):491-499, 2009-03, Vol.5 (3), p.491-499 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1738483774 |
source | American Chemical Society Journals |
subjects | APPROXIMATIONS BISMUTH BROMINE DENSITY FUNCTIONAL METHOD DIRAC EQUATION ELECTRONIC STRUCTURE Environmental Molecular Sciences Laboratory GOLD GOLD HYDRIDES HALIDES INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY IODINE L-S COUPLING NWChem Quantum Electronic Structure Relativistic Density Functional Theory |
title | Gaussian Basis Set and Planewave Relativistic Spin−Orbit Methods in NWChem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Basis%20Set%20and%20Planewave%20Relativistic%20Spin%E2%88%92Orbit%20Methods%20in%20NWChem&rft.jtitle=Journal%20of%20Chemical%20Theory%20and%20Computation,%205(3):491-499&rft.au=Nichols,%20Patrick&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2009-03-10&rft.volume=5&rft.issue=3&rft.spage=491&rft.epage=499&rft.pages=491-499&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct8002892&rft_dat=%3Cproquest_osti_%3E1738483774%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738483774&rft_id=info:pmid/26610216&rfr_iscdi=true |