A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells

•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2016-01, Vol.200, p.396-404
Hauptverfasser: de los Ángeles Fernandez, Maria, de los Ángeles Sanromán, Maria, Marks, Stanislaw, Makinia, Jacek, Gonzalez del Campo, Araceli, Rodrigo, Manuel, Fernandez, Francisco Jesus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue
container_start_page 396
container_title Bioresource technology
container_volume 200
creator de los Ángeles Fernandez, Maria
de los Ángeles Sanromán, Maria
Marks, Stanislaw
Makinia, Jacek
Gonzalez del Campo, Araceli
Rodrigo, Manuel
Fernandez, Francisco Jesus
description •Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production. In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.
doi_str_mv 10.1016/j.biortech.2015.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738483732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852415014054</els_id><sourcerecordid>1738483732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EoqXwFSqPLAm2EzvJRlXxT6rEAgOTldjn1lUSFztB7bcnUVtWppPu3r1790NoTklMCRUP27iyznegNjEjlA_NmFBygaY0z5KIFZm4RFNSCBLlnKUTdBPClhCS0IxdowkTnLJcpFP0tcBrDwdcuT1unIYaO4PXda9cAGzAN9B2ZWddi8tW43BoO-92G6uw21t9HNgWN1Z5V9myxqYfLBTUdbhFV6asA9yd6gx9Pj99LF-j1fvL23KxilRKRRdRXhkGnGc6J4IXjBOWl6ziXBtQlAlaFIonQChT1LC0qNLcpKk2homEmNIkM3R_9N15991D6GRjw5igbMH1QdIsydM8yRI2SMVROqQNwYORO2-b0h8kJXLEKrfyjFWOWMf-gHVYnJ9u9FUD-m_tzHEQPB4FMHz6Y8HLoCy0CrT1oDqpnf3vxi8_RYyq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738483732</pqid></control><display><type>article</type><title>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de los Ángeles Fernandez, Maria ; de los Ángeles Sanromán, Maria ; Marks, Stanislaw ; Makinia, Jacek ; Gonzalez del Campo, Araceli ; Rodrigo, Manuel ; Fernandez, Francisco Jesus</creator><creatorcontrib>de los Ángeles Fernandez, Maria ; de los Ángeles Sanromán, Maria ; Marks, Stanislaw ; Makinia, Jacek ; Gonzalez del Campo, Araceli ; Rodrigo, Manuel ; Fernandez, Francisco Jesus</creatorcontrib><description>•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production. In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2015.10.010</identifier><identifier>PMID: 26512864</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioelectric Energy Sources ; Calibration ; Electricity ; Electrons ; Equipment Design ; Ethanol ; Ethanol - chemistry ; Fermentation ; Glucose ; Glucose - chemistry ; Kinetics ; Lactic Acid - chemistry ; Microbial fuel cell ; Modeling ; Oxygen - chemistry</subject><ispartof>Bioresource technology, 2016-01, Vol.200, p.396-404</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</citedby><cites>FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</cites><orcidid>0000-0003-0389-6247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852415014054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26512864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de los Ángeles Fernandez, Maria</creatorcontrib><creatorcontrib>de los Ángeles Sanromán, Maria</creatorcontrib><creatorcontrib>Marks, Stanislaw</creatorcontrib><creatorcontrib>Makinia, Jacek</creatorcontrib><creatorcontrib>Gonzalez del Campo, Araceli</creatorcontrib><creatorcontrib>Rodrigo, Manuel</creatorcontrib><creatorcontrib>Fernandez, Francisco Jesus</creatorcontrib><title>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production. In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.</description><subject>Bioelectric Energy Sources</subject><subject>Calibration</subject><subject>Electricity</subject><subject>Electrons</subject><subject>Equipment Design</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Glucose - chemistry</subject><subject>Kinetics</subject><subject>Lactic Acid - chemistry</subject><subject>Microbial fuel cell</subject><subject>Modeling</subject><subject>Oxygen - chemistry</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD9PwzAQxS0EoqXwFSqPLAm2EzvJRlXxT6rEAgOTldjn1lUSFztB7bcnUVtWppPu3r1790NoTklMCRUP27iyznegNjEjlA_NmFBygaY0z5KIFZm4RFNSCBLlnKUTdBPClhCS0IxdowkTnLJcpFP0tcBrDwdcuT1unIYaO4PXda9cAGzAN9B2ZWddi8tW43BoO-92G6uw21t9HNgWN1Z5V9myxqYfLBTUdbhFV6asA9yd6gx9Pj99LF-j1fvL23KxilRKRRdRXhkGnGc6J4IXjBOWl6ziXBtQlAlaFIonQChT1LC0qNLcpKk2homEmNIkM3R_9N15991D6GRjw5igbMH1QdIsydM8yRI2SMVROqQNwYORO2-b0h8kJXLEKrfyjFWOWMf-gHVYnJ9u9FUD-m_tzHEQPB4FMHz6Y8HLoCy0CrT1oDqpnf3vxi8_RYyq</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>de los Ángeles Fernandez, Maria</creator><creator>de los Ángeles Sanromán, Maria</creator><creator>Marks, Stanislaw</creator><creator>Makinia, Jacek</creator><creator>Gonzalez del Campo, Araceli</creator><creator>Rodrigo, Manuel</creator><creator>Fernandez, Francisco Jesus</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0389-6247</orcidid></search><sort><creationdate>201601</creationdate><title>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</title><author>de los Ángeles Fernandez, Maria ; de los Ángeles Sanromán, Maria ; Marks, Stanislaw ; Makinia, Jacek ; Gonzalez del Campo, Araceli ; Rodrigo, Manuel ; Fernandez, Francisco Jesus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioelectric Energy Sources</topic><topic>Calibration</topic><topic>Electricity</topic><topic>Electrons</topic><topic>Equipment Design</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Glucose - chemistry</topic><topic>Kinetics</topic><topic>Lactic Acid - chemistry</topic><topic>Microbial fuel cell</topic><topic>Modeling</topic><topic>Oxygen - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de los Ángeles Fernandez, Maria</creatorcontrib><creatorcontrib>de los Ángeles Sanromán, Maria</creatorcontrib><creatorcontrib>Marks, Stanislaw</creatorcontrib><creatorcontrib>Makinia, Jacek</creatorcontrib><creatorcontrib>Gonzalez del Campo, Araceli</creatorcontrib><creatorcontrib>Rodrigo, Manuel</creatorcontrib><creatorcontrib>Fernandez, Francisco Jesus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de los Ángeles Fernandez, Maria</au><au>de los Ángeles Sanromán, Maria</au><au>Marks, Stanislaw</au><au>Makinia, Jacek</au><au>Gonzalez del Campo, Araceli</au><au>Rodrigo, Manuel</au><au>Fernandez, Francisco Jesus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2016-01</date><risdate>2016</risdate><volume>200</volume><spage>396</spage><epage>404</epage><pages>396-404</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production. In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26512864</pmid><doi>10.1016/j.biortech.2015.10.010</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0389-6247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2016-01, Vol.200, p.396-404
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1738483732
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bioelectric Energy Sources
Calibration
Electricity
Electrons
Equipment Design
Ethanol
Ethanol - chemistry
Fermentation
Glucose
Glucose - chemistry
Kinetics
Lactic Acid - chemistry
Microbial fuel cell
Modeling
Oxygen - chemistry
title A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20grey%20box%20model%20of%20glucose%20fermentation%20and%20syntrophic%20oxidation%20in%20microbial%20fuel%20cells&rft.jtitle=Bioresource%20technology&rft.au=de%20los%20%C3%81ngeles%20Fernandez,%20Maria&rft.date=2016-01&rft.volume=200&rft.spage=396&rft.epage=404&rft.pages=396-404&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2015.10.010&rft_dat=%3Cproquest_cross%3E1738483732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738483732&rft_id=info:pmid/26512864&rft_els_id=S0960852415014054&rfr_iscdi=true