A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells
•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only acc...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2016-01, Vol.200, p.396-404 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | |
container_start_page | 396 |
container_title | Bioresource technology |
container_volume | 200 |
creator | de los Ángeles Fernandez, Maria de los Ángeles Sanromán, Maria Marks, Stanislaw Makinia, Jacek Gonzalez del Campo, Araceli Rodrigo, Manuel Fernandez, Francisco Jesus |
description | •Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production.
In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol. |
doi_str_mv | 10.1016/j.biortech.2015.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738483732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852415014054</els_id><sourcerecordid>1738483732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EoqXwFSqPLAm2EzvJRlXxT6rEAgOTldjn1lUSFztB7bcnUVtWppPu3r1790NoTklMCRUP27iyznegNjEjlA_NmFBygaY0z5KIFZm4RFNSCBLlnKUTdBPClhCS0IxdowkTnLJcpFP0tcBrDwdcuT1unIYaO4PXda9cAGzAN9B2ZWddi8tW43BoO-92G6uw21t9HNgWN1Z5V9myxqYfLBTUdbhFV6asA9yd6gx9Pj99LF-j1fvL23KxilRKRRdRXhkGnGc6J4IXjBOWl6ziXBtQlAlaFIonQChT1LC0qNLcpKk2homEmNIkM3R_9N15991D6GRjw5igbMH1QdIsydM8yRI2SMVROqQNwYORO2-b0h8kJXLEKrfyjFWOWMf-gHVYnJ9u9FUD-m_tzHEQPB4FMHz6Y8HLoCy0CrT1oDqpnf3vxi8_RYyq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738483732</pqid></control><display><type>article</type><title>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de los Ángeles Fernandez, Maria ; de los Ángeles Sanromán, Maria ; Marks, Stanislaw ; Makinia, Jacek ; Gonzalez del Campo, Araceli ; Rodrigo, Manuel ; Fernandez, Francisco Jesus</creator><creatorcontrib>de los Ángeles Fernandez, Maria ; de los Ángeles Sanromán, Maria ; Marks, Stanislaw ; Makinia, Jacek ; Gonzalez del Campo, Araceli ; Rodrigo, Manuel ; Fernandez, Francisco Jesus</creatorcontrib><description>•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production.
In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2015.10.010</identifier><identifier>PMID: 26512864</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioelectric Energy Sources ; Calibration ; Electricity ; Electrons ; Equipment Design ; Ethanol ; Ethanol - chemistry ; Fermentation ; Glucose ; Glucose - chemistry ; Kinetics ; Lactic Acid - chemistry ; Microbial fuel cell ; Modeling ; Oxygen - chemistry</subject><ispartof>Bioresource technology, 2016-01, Vol.200, p.396-404</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</citedby><cites>FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</cites><orcidid>0000-0003-0389-6247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852415014054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26512864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de los Ángeles Fernandez, Maria</creatorcontrib><creatorcontrib>de los Ángeles Sanromán, Maria</creatorcontrib><creatorcontrib>Marks, Stanislaw</creatorcontrib><creatorcontrib>Makinia, Jacek</creatorcontrib><creatorcontrib>Gonzalez del Campo, Araceli</creatorcontrib><creatorcontrib>Rodrigo, Manuel</creatorcontrib><creatorcontrib>Fernandez, Francisco Jesus</creatorcontrib><title>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production.
In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.</description><subject>Bioelectric Energy Sources</subject><subject>Calibration</subject><subject>Electricity</subject><subject>Electrons</subject><subject>Equipment Design</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Glucose - chemistry</subject><subject>Kinetics</subject><subject>Lactic Acid - chemistry</subject><subject>Microbial fuel cell</subject><subject>Modeling</subject><subject>Oxygen - chemistry</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD9PwzAQxS0EoqXwFSqPLAm2EzvJRlXxT6rEAgOTldjn1lUSFztB7bcnUVtWppPu3r1790NoTklMCRUP27iyznegNjEjlA_NmFBygaY0z5KIFZm4RFNSCBLlnKUTdBPClhCS0IxdowkTnLJcpFP0tcBrDwdcuT1unIYaO4PXda9cAGzAN9B2ZWddi8tW43BoO-92G6uw21t9HNgWN1Z5V9myxqYfLBTUdbhFV6asA9yd6gx9Pj99LF-j1fvL23KxilRKRRdRXhkGnGc6J4IXjBOWl6ziXBtQlAlaFIonQChT1LC0qNLcpKk2homEmNIkM3R_9N15991D6GRjw5igbMH1QdIsydM8yRI2SMVROqQNwYORO2-b0h8kJXLEKrfyjFWOWMf-gHVYnJ9u9FUD-m_tzHEQPB4FMHz6Y8HLoCy0CrT1oDqpnf3vxi8_RYyq</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>de los Ángeles Fernandez, Maria</creator><creator>de los Ángeles Sanromán, Maria</creator><creator>Marks, Stanislaw</creator><creator>Makinia, Jacek</creator><creator>Gonzalez del Campo, Araceli</creator><creator>Rodrigo, Manuel</creator><creator>Fernandez, Francisco Jesus</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0389-6247</orcidid></search><sort><creationdate>201601</creationdate><title>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</title><author>de los Ángeles Fernandez, Maria ; de los Ángeles Sanromán, Maria ; Marks, Stanislaw ; Makinia, Jacek ; Gonzalez del Campo, Araceli ; Rodrigo, Manuel ; Fernandez, Francisco Jesus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-15bf2e557d8065925028a2b55dfec126199c53e012c1f249b48f44dff2630faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioelectric Energy Sources</topic><topic>Calibration</topic><topic>Electricity</topic><topic>Electrons</topic><topic>Equipment Design</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Glucose - chemistry</topic><topic>Kinetics</topic><topic>Lactic Acid - chemistry</topic><topic>Microbial fuel cell</topic><topic>Modeling</topic><topic>Oxygen - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de los Ángeles Fernandez, Maria</creatorcontrib><creatorcontrib>de los Ángeles Sanromán, Maria</creatorcontrib><creatorcontrib>Marks, Stanislaw</creatorcontrib><creatorcontrib>Makinia, Jacek</creatorcontrib><creatorcontrib>Gonzalez del Campo, Araceli</creatorcontrib><creatorcontrib>Rodrigo, Manuel</creatorcontrib><creatorcontrib>Fernandez, Francisco Jesus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de los Ángeles Fernandez, Maria</au><au>de los Ángeles Sanromán, Maria</au><au>Marks, Stanislaw</au><au>Makinia, Jacek</au><au>Gonzalez del Campo, Araceli</au><au>Rodrigo, Manuel</au><au>Fernandez, Francisco Jesus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2016-01</date><risdate>2016</risdate><volume>200</volume><spage>396</spage><epage>404</epage><pages>396-404</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Glucose fermentation and syntrophic oxidation in microbial fuel cells were modeled.•Fermentation processes were similar under open and closed circuit operation.•The main fermentation product was ethanol.•Most of the electricity generated, 90%, came from ethanol oxidation.•Glucose oxidation only account for a 10% of the electricity production.
In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol−1 glucose) and lactic acid (with a yield of 1.36molmol−1 glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26512864</pmid><doi>10.1016/j.biortech.2015.10.010</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0389-6247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2016-01, Vol.200, p.396-404 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1738483732 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bioelectric Energy Sources Calibration Electricity Electrons Equipment Design Ethanol Ethanol - chemistry Fermentation Glucose Glucose - chemistry Kinetics Lactic Acid - chemistry Microbial fuel cell Modeling Oxygen - chemistry |
title | A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20grey%20box%20model%20of%20glucose%20fermentation%20and%20syntrophic%20oxidation%20in%20microbial%20fuel%20cells&rft.jtitle=Bioresource%20technology&rft.au=de%20los%20%C3%81ngeles%20Fernandez,%20Maria&rft.date=2016-01&rft.volume=200&rft.spage=396&rft.epage=404&rft.pages=396-404&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2015.10.010&rft_dat=%3Cproquest_cross%3E1738483732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738483732&rft_id=info:pmid/26512864&rft_els_id=S0960852415014054&rfr_iscdi=true |