Quantifying the effects of uncertainty on optimal groundwater bioremediation policies

This paper describes a method for quantifying the economic and environmental effects of uncertainty in biological parameter values on optimal in situ bioremediation design. The range of uncertainty in model results associated with a range of input parameter values is quantified for both individual p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 1998-12, Vol.34 (12), p.3615-3625
Hauptverfasser: Minsker, Barbara S., Shoemaker, Christine A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3625
container_issue 12
container_start_page 3615
container_title Water resources research
container_volume 34
creator Minsker, Barbara S.
Shoemaker, Christine A.
description This paper describes a method for quantifying the economic and environmental effects of uncertainty in biological parameter values on optimal in situ bioremediation design. The range of uncertainty in model results associated with a range of input parameter values is quantified for both individual parameter errors and errors in combinations of parameters. Three measures of sensitivity are presented that quantify different aspects of the effects of model error on an implemented optimal policy. Numerical results are presented for an example site contaminated with phenol, with parameter ranges derived from values reported in the literature. For the example site, Ks (the substrate half‐velocity coefficient in the Monod kinetic equation for biodegradation) was found to be the most sensitive biological parameter and this sensitivity was asymmetric; i.e., reductions in the value of Ks have a much greater effect than increases in the value of Ks. The methodology applied in this paper could also be applied to other water resource management problems, allowing the user to quantify the effects of wide ranges of possible parameter values on model results. The method is particularly useful for computationally intensive optimization models, as it requires a manageable number of model runs, and for the many situations where insufficient data are available to permit accurate estimation of probability distributions.
doi_str_mv 10.1029/1998WR900005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17384832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13607418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4450-4dc2e899d6c7047d2ad92172428a219020950b53b7b1b001b4ec5c5ee2e591d33</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpbPyATEwE_JU4HlEFBYFAragYLce5gCGNi-2o9N9jVISYwMt5eN7T3SF0TPAZwVSeEymrp7nE6RU7aEQk57mQgu2iEcac5YRJsY8OQnjFmPCiFCO0mA26j7bd2P45iy-QQduCiSFzbTb0BnzUto-bzPWZW0W71F327N3QN2sdwWe1dR6W0FgdbSIr11ljIRyivVZ3AY6-6xgtri4fJ9f53cP0ZnJxlxvOC5zzxlCopGxKIzAXDdWNpERQTitNicQUywLXBatFTeo0cs3BFKYAoFBI0jA2Rifbvivv3gcIUS1tMNB1ugc3BEUEq3jF6P-QlVhwUiV4uoXGuxA8tGrl09Z-owhWX0dWv4-cON3yte1g86dVT_PJvEq_FMq3IRsifPyEtH9TpWAiyfupur2fzgQtiZqxTx3yjVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13607418</pqid></control><display><type>article</type><title>Quantifying the effects of uncertainty on optimal groundwater bioremediation policies</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Minsker, Barbara S. ; Shoemaker, Christine A.</creator><creatorcontrib>Minsker, Barbara S. ; Shoemaker, Christine A.</creatorcontrib><description>This paper describes a method for quantifying the economic and environmental effects of uncertainty in biological parameter values on optimal in situ bioremediation design. The range of uncertainty in model results associated with a range of input parameter values is quantified for both individual parameter errors and errors in combinations of parameters. Three measures of sensitivity are presented that quantify different aspects of the effects of model error on an implemented optimal policy. Numerical results are presented for an example site contaminated with phenol, with parameter ranges derived from values reported in the literature. For the example site, Ks (the substrate half‐velocity coefficient in the Monod kinetic equation for biodegradation) was found to be the most sensitive biological parameter and this sensitivity was asymmetric; i.e., reductions in the value of Ks have a much greater effect than increases in the value of Ks. The methodology applied in this paper could also be applied to other water resource management problems, allowing the user to quantify the effects of wide ranges of possible parameter values on model results. The method is particularly useful for computationally intensive optimization models, as it requires a manageable number of model runs, and for the many situations where insufficient data are available to permit accurate estimation of probability distributions.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/1998WR900005</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1998-12, Vol.34 (12), p.3615-3625</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4450-4dc2e899d6c7047d2ad92172428a219020950b53b7b1b001b4ec5c5ee2e591d33</citedby><cites>FETCH-LOGICAL-c4450-4dc2e899d6c7047d2ad92172428a219020950b53b7b1b001b4ec5c5ee2e591d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1998WR900005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1998WR900005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Minsker, Barbara S.</creatorcontrib><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><title>Quantifying the effects of uncertainty on optimal groundwater bioremediation policies</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>This paper describes a method for quantifying the economic and environmental effects of uncertainty in biological parameter values on optimal in situ bioremediation design. The range of uncertainty in model results associated with a range of input parameter values is quantified for both individual parameter errors and errors in combinations of parameters. Three measures of sensitivity are presented that quantify different aspects of the effects of model error on an implemented optimal policy. Numerical results are presented for an example site contaminated with phenol, with parameter ranges derived from values reported in the literature. For the example site, Ks (the substrate half‐velocity coefficient in the Monod kinetic equation for biodegradation) was found to be the most sensitive biological parameter and this sensitivity was asymmetric; i.e., reductions in the value of Ks have a much greater effect than increases in the value of Ks. The methodology applied in this paper could also be applied to other water resource management problems, allowing the user to quantify the effects of wide ranges of possible parameter values on model results. The method is particularly useful for computationally intensive optimization models, as it requires a manageable number of model runs, and for the many situations where insufficient data are available to permit accurate estimation of probability distributions.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpbPyATEwE_JU4HlEFBYFAragYLce5gCGNi-2o9N9jVISYwMt5eN7T3SF0TPAZwVSeEymrp7nE6RU7aEQk57mQgu2iEcac5YRJsY8OQnjFmPCiFCO0mA26j7bd2P45iy-QQduCiSFzbTb0BnzUto-bzPWZW0W71F327N3QN2sdwWe1dR6W0FgdbSIr11ljIRyivVZ3AY6-6xgtri4fJ9f53cP0ZnJxlxvOC5zzxlCopGxKIzAXDdWNpERQTitNicQUywLXBatFTeo0cs3BFKYAoFBI0jA2Rifbvivv3gcIUS1tMNB1ugc3BEUEq3jF6P-QlVhwUiV4uoXGuxA8tGrl09Z-owhWX0dWv4-cON3yte1g86dVT_PJvEq_FMq3IRsifPyEtH9TpWAiyfupur2fzgQtiZqxTx3yjVA</recordid><startdate>199812</startdate><enddate>199812</enddate><creator>Minsker, Barbara S.</creator><creator>Shoemaker, Christine A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>199812</creationdate><title>Quantifying the effects of uncertainty on optimal groundwater bioremediation policies</title><author>Minsker, Barbara S. ; Shoemaker, Christine A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4450-4dc2e899d6c7047d2ad92172428a219020950b53b7b1b001b4ec5c5ee2e591d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minsker, Barbara S.</creatorcontrib><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minsker, Barbara S.</au><au>Shoemaker, Christine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the effects of uncertainty on optimal groundwater bioremediation policies</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1998-12</date><risdate>1998</risdate><volume>34</volume><issue>12</issue><spage>3615</spage><epage>3625</epage><pages>3615-3625</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>This paper describes a method for quantifying the economic and environmental effects of uncertainty in biological parameter values on optimal in situ bioremediation design. The range of uncertainty in model results associated with a range of input parameter values is quantified for both individual parameter errors and errors in combinations of parameters. Three measures of sensitivity are presented that quantify different aspects of the effects of model error on an implemented optimal policy. Numerical results are presented for an example site contaminated with phenol, with parameter ranges derived from values reported in the literature. For the example site, Ks (the substrate half‐velocity coefficient in the Monod kinetic equation for biodegradation) was found to be the most sensitive biological parameter and this sensitivity was asymmetric; i.e., reductions in the value of Ks have a much greater effect than increases in the value of Ks. The methodology applied in this paper could also be applied to other water resource management problems, allowing the user to quantify the effects of wide ranges of possible parameter values on model results. The method is particularly useful for computationally intensive optimization models, as it requires a manageable number of model runs, and for the many situations where insufficient data are available to permit accurate estimation of probability distributions.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1998WR900005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1998-12, Vol.34 (12), p.3615-3625
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_17384832
source Wiley Journals; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
title Quantifying the effects of uncertainty on optimal groundwater bioremediation policies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20effects%20of%20uncertainty%20on%20optimal%20groundwater%20bioremediation%20policies&rft.jtitle=Water%20resources%20research&rft.au=Minsker,%20Barbara%20S.&rft.date=1998-12&rft.volume=34&rft.issue=12&rft.spage=3615&rft.epage=3625&rft.pages=3615-3625&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/1998WR900005&rft_dat=%3Cproquest_cross%3E13607418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13607418&rft_id=info:pmid/&rfr_iscdi=true