Temporal Visual Mechanisms May Mediate Compensation for Macular Pigment

Macular pigment (MP) is a pre-receptoral filter that is diet derived and deposited in relatively high optical density in the foveal region of the retina. Due to its yellow coloration, MP absorbs light of relatively short wavelengths, ranging from 400 nm to 520 nm. Despite the spectral and spatial no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Perception (London) 2015-12, Vol.44 (12), p.1400-1415
Hauptverfasser: Stringham, Nicole T., Stringham, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macular pigment (MP) is a pre-receptoral filter that is diet derived and deposited in relatively high optical density in the foveal region of the retina. Due to its yellow coloration, MP absorbs light of relatively short wavelengths, ranging from 400 nm to 520 nm. Despite the spectral and spatial nonuniformity imposed upon the sensory retina by MP, perception appears to be relatively uniform across the central visual field. MP therefore offers an opportunity to determine experimentally potential mechanisms responsible for mediating this uniformity. After assessing, in 14 subjects, MP’s effects on the temporal sensitivity of both the short-wavelength- and middle-/long-wavelength-sensitive visual pathways, it appears that the visual system compensates for absorption of short-wavelength light by MP by slowing the sampling rate of short-wavelength cones and by increasing the processing speed of middle-/long-wavelength-sensitive cones. This mechanism could work via temporal summation or a temporal neural code, whereby slower response dynamics lead to amplification of relatively weak signals.
ISSN:0301-0066
1468-4233
DOI:10.1177/0301006615607119