High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU

Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tuberculosis (Edinburgh, Scotland) Scotland), 2015-12, Vol.95 (6), p.664-677
Hauptverfasser: Rani, Chitra, Mehra, Rukmankesh, Sharma, Rashmi, Chib, Reena, Wazir, Priya, Nargotra, Amit, Khan, Inshad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 6
container_start_page 664
container_title Tuberculosis (Edinburgh, Scotland)
container_volume 95
creator Rani, Chitra
Mehra, Rukmankesh
Sharma, Rashmi
Chib, Reena
Wazir, Priya
Nargotra, Amit
Khan, Inshad Ali
description Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.
doi_str_mv 10.1016/j.tube.2015.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738482255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1472979215300159</els_id><sourcerecordid>1738482255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYsozjj6BVxIlm7ayU36JwURZNCZgREXOuAupMnte3mmzTNJB7r2i5vyRhcuXOVyOb9D7jlF8RpoBRTay0OVlgErRqGpaFtRyp8U5yA6XjIB35_mue5Y2Xc9OytexHigGaKCPi_OWMtBNE13Xvy6sbt9mfbBL7v9cUkk6oA4E2twTna0GEmclHNk8g714pDYeW8Hm3yIJKmww2TnHVEa0-pSUHMcMaiIeZPsg00r8SP5vGo_5AUGu0xk-3TIVj7aSK7ddP-yeDYqF_HV43tR3H_6-O3qprz7cn179eGu1LWAVHJoBmrUaAzvR2SgBOfQY2cGI3Sj27oeADoFtWKsZ02julGDMBxg7I3oDb8o3p58j8H_XDAmOdmo0Tk1o1-ihI6LWrCMZik7SXXwMQYc5THYSYVVApVb-PIgtzvkFr6krczhZ-jNo_8yTGj-In_SzoJ3JwHmKx8sBhm1xVmjsQF1ksbb__u__wfXzs5WK_cDV4wHv4Q55ydBRiap_LrVv7UPDc_VNz3_DfA_ru4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738482255</pqid></control><display><type>article</type><title>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rani, Chitra ; Mehra, Rukmankesh ; Sharma, Rashmi ; Chib, Reena ; Wazir, Priya ; Nargotra, Amit ; Khan, Inshad Ali</creator><creatorcontrib>Rani, Chitra ; Mehra, Rukmankesh ; Sharma, Rashmi ; Chib, Reena ; Wazir, Priya ; Nargotra, Amit ; Khan, Inshad Ali</creatorcontrib><description>Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.</description><identifier>ISSN: 1472-9792</identifier><identifier>EISSN: 1873-281X</identifier><identifier>DOI: 10.1016/j.tube.2015.06.003</identifier><identifier>PMID: 26318557</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Acetyltransferase ; Antitubercular Agents - chemistry ; Antitubercular Agents - pharmacology ; Antitubercular Agents - toxicity ; Bacterial Proteins - antagonists &amp; inhibitors ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cell Survival - drug effects ; Dose-Response Relationship, Drug ; Drug Discovery - methods ; Drug Resistance, Bacterial ; Drug resistant ; Drug Therapy, Combination ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzyme Inhibitors - toxicity ; GlmU ; Glucosamine - analogs &amp; derivatives ; Glucosamine - metabolism ; Glucosephosphates - metabolism ; Hep G2 Cells ; High-Throughput Screening Assays ; Humans ; Infectious Disease ; Kinetics ; M. tuberculosis ; Microbial Sensitivity Tests ; Molecular Docking Simulation ; Molecular Structure ; Molecular Targeted Therapy ; Multienzyme Complexes - antagonists &amp; inhibitors ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Mutation ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - growth &amp; development ; Pulmonary/Respiratory ; Rifampicin ; Structure-Activity Relationship ; UDP-GlcNAc</subject><ispartof>Tuberculosis (Edinburgh, Scotland), 2015-12, Vol.95 (6), p.664-677</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</citedby><cites>FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tube.2015.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26318557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rani, Chitra</creatorcontrib><creatorcontrib>Mehra, Rukmankesh</creatorcontrib><creatorcontrib>Sharma, Rashmi</creatorcontrib><creatorcontrib>Chib, Reena</creatorcontrib><creatorcontrib>Wazir, Priya</creatorcontrib><creatorcontrib>Nargotra, Amit</creatorcontrib><creatorcontrib>Khan, Inshad Ali</creatorcontrib><title>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</title><title>Tuberculosis (Edinburgh, Scotland)</title><addtitle>Tuberculosis (Edinb)</addtitle><description>Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.</description><subject>Acetyltransferase</subject><subject>Antitubercular Agents - chemistry</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Antitubercular Agents - toxicity</subject><subject>Bacterial Proteins - antagonists &amp; inhibitors</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Survival - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Discovery - methods</subject><subject>Drug Resistance, Bacterial</subject><subject>Drug resistant</subject><subject>Drug Therapy, Combination</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme Inhibitors - toxicity</subject><subject>GlmU</subject><subject>Glucosamine - analogs &amp; derivatives</subject><subject>Glucosamine - metabolism</subject><subject>Glucosephosphates - metabolism</subject><subject>Hep G2 Cells</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Infectious Disease</subject><subject>Kinetics</subject><subject>M. tuberculosis</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Structure</subject><subject>Molecular Targeted Therapy</subject><subject>Multienzyme Complexes - antagonists &amp; inhibitors</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Pulmonary/Respiratory</subject><subject>Rifampicin</subject><subject>Structure-Activity Relationship</subject><subject>UDP-GlcNAc</subject><issn>1472-9792</issn><issn>1873-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-L1TAUxYsozjj6BVxIlm7ayU36JwURZNCZgREXOuAupMnte3mmzTNJB7r2i5vyRhcuXOVyOb9D7jlF8RpoBRTay0OVlgErRqGpaFtRyp8U5yA6XjIB35_mue5Y2Xc9OytexHigGaKCPi_OWMtBNE13Xvy6sbt9mfbBL7v9cUkk6oA4E2twTna0GEmclHNk8g714pDYeW8Hm3yIJKmww2TnHVEa0-pSUHMcMaiIeZPsg00r8SP5vGo_5AUGu0xk-3TIVj7aSK7ddP-yeDYqF_HV43tR3H_6-O3qprz7cn179eGu1LWAVHJoBmrUaAzvR2SgBOfQY2cGI3Sj27oeADoFtWKsZ02julGDMBxg7I3oDb8o3p58j8H_XDAmOdmo0Tk1o1-ihI6LWrCMZik7SXXwMQYc5THYSYVVApVb-PIgtzvkFr6krczhZ-jNo_8yTGj-In_SzoJ3JwHmKx8sBhm1xVmjsQF1ksbb__u__wfXzs5WK_cDV4wHv4Q55ydBRiap_LrVv7UPDc_VNz3_DfA_ru4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Rani, Chitra</creator><creator>Mehra, Rukmankesh</creator><creator>Sharma, Rashmi</creator><creator>Chib, Reena</creator><creator>Wazir, Priya</creator><creator>Nargotra, Amit</creator><creator>Khan, Inshad Ali</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</title><author>Rani, Chitra ; Mehra, Rukmankesh ; Sharma, Rashmi ; Chib, Reena ; Wazir, Priya ; Nargotra, Amit ; Khan, Inshad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetyltransferase</topic><topic>Antitubercular Agents - chemistry</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Antitubercular Agents - toxicity</topic><topic>Bacterial Proteins - antagonists &amp; inhibitors</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Survival - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Discovery - methods</topic><topic>Drug Resistance, Bacterial</topic><topic>Drug resistant</topic><topic>Drug Therapy, Combination</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme Inhibitors - toxicity</topic><topic>GlmU</topic><topic>Glucosamine - analogs &amp; derivatives</topic><topic>Glucosamine - metabolism</topic><topic>Glucosephosphates - metabolism</topic><topic>Hep G2 Cells</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Infectious Disease</topic><topic>Kinetics</topic><topic>M. tuberculosis</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Structure</topic><topic>Molecular Targeted Therapy</topic><topic>Multienzyme Complexes - antagonists &amp; inhibitors</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Pulmonary/Respiratory</topic><topic>Rifampicin</topic><topic>Structure-Activity Relationship</topic><topic>UDP-GlcNAc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Chitra</creatorcontrib><creatorcontrib>Mehra, Rukmankesh</creatorcontrib><creatorcontrib>Sharma, Rashmi</creatorcontrib><creatorcontrib>Chib, Reena</creatorcontrib><creatorcontrib>Wazir, Priya</creatorcontrib><creatorcontrib>Nargotra, Amit</creatorcontrib><creatorcontrib>Khan, Inshad Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Chitra</au><au>Mehra, Rukmankesh</au><au>Sharma, Rashmi</au><au>Chib, Reena</au><au>Wazir, Priya</au><au>Nargotra, Amit</au><au>Khan, Inshad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</atitle><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle><addtitle>Tuberculosis (Edinb)</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>95</volume><issue>6</issue><spage>664</spage><epage>677</epage><pages>664-677</pages><issn>1472-9792</issn><eissn>1873-281X</eissn><abstract>Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>26318557</pmid><doi>10.1016/j.tube.2015.06.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1472-9792
ispartof Tuberculosis (Edinburgh, Scotland), 2015-12, Vol.95 (6), p.664-677
issn 1472-9792
1873-281X
language eng
recordid cdi_proquest_miscellaneous_1738482255
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acetyltransferase
Antitubercular Agents - chemistry
Antitubercular Agents - pharmacology
Antitubercular Agents - toxicity
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cell Survival - drug effects
Dose-Response Relationship, Drug
Drug Discovery - methods
Drug Resistance, Bacterial
Drug resistant
Drug Therapy, Combination
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Enzyme Inhibitors - toxicity
GlmU
Glucosamine - analogs & derivatives
Glucosamine - metabolism
Glucosephosphates - metabolism
Hep G2 Cells
High-Throughput Screening Assays
Humans
Infectious Disease
Kinetics
M. tuberculosis
Microbial Sensitivity Tests
Molecular Docking Simulation
Molecular Structure
Molecular Targeted Therapy
Multienzyme Complexes - antagonists & inhibitors
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Mutation
Mycobacterium tuberculosis - drug effects
Mycobacterium tuberculosis - enzymology
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - growth & development
Pulmonary/Respiratory
Rifampicin
Structure-Activity Relationship
UDP-GlcNAc
title High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20screen%20identifies%20small%20molecule%20inhibitors%20targeting%20acetyltransferase%20activity%20of%20Mycobacterium%20tuberculosis%20GlmU&rft.jtitle=Tuberculosis%20(Edinburgh,%20Scotland)&rft.au=Rani,%20Chitra&rft.date=2015-12-01&rft.volume=95&rft.issue=6&rft.spage=664&rft.epage=677&rft.pages=664-677&rft.issn=1472-9792&rft.eissn=1873-281X&rft_id=info:doi/10.1016/j.tube.2015.06.003&rft_dat=%3Cproquest_cross%3E1738482255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738482255&rft_id=info:pmid/26318557&rft_els_id=S1472979215300159&rfr_iscdi=true