High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU
Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), ac...
Gespeichert in:
Veröffentlicht in: | Tuberculosis (Edinburgh, Scotland) Scotland), 2015-12, Vol.95 (6), p.664-677 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 677 |
---|---|
container_issue | 6 |
container_start_page | 664 |
container_title | Tuberculosis (Edinburgh, Scotland) |
container_volume | 95 |
creator | Rani, Chitra Mehra, Rukmankesh Sharma, Rashmi Chib, Reena Wazir, Priya Nargotra, Amit Khan, Inshad Ali |
description | Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program. |
doi_str_mv | 10.1016/j.tube.2015.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1738482255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1472979215300159</els_id><sourcerecordid>1738482255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYsozjj6BVxIlm7ayU36JwURZNCZgREXOuAupMnte3mmzTNJB7r2i5vyRhcuXOVyOb9D7jlF8RpoBRTay0OVlgErRqGpaFtRyp8U5yA6XjIB35_mue5Y2Xc9OytexHigGaKCPi_OWMtBNE13Xvy6sbt9mfbBL7v9cUkk6oA4E2twTna0GEmclHNk8g714pDYeW8Hm3yIJKmww2TnHVEa0-pSUHMcMaiIeZPsg00r8SP5vGo_5AUGu0xk-3TIVj7aSK7ddP-yeDYqF_HV43tR3H_6-O3qprz7cn179eGu1LWAVHJoBmrUaAzvR2SgBOfQY2cGI3Sj27oeADoFtWKsZ02julGDMBxg7I3oDb8o3p58j8H_XDAmOdmo0Tk1o1-ihI6LWrCMZik7SXXwMQYc5THYSYVVApVb-PIgtzvkFr6krczhZ-jNo_8yTGj-In_SzoJ3JwHmKx8sBhm1xVmjsQF1ksbb__u__wfXzs5WK_cDV4wHv4Q55ydBRiap_LrVv7UPDc_VNz3_DfA_ru4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738482255</pqid></control><display><type>article</type><title>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rani, Chitra ; Mehra, Rukmankesh ; Sharma, Rashmi ; Chib, Reena ; Wazir, Priya ; Nargotra, Amit ; Khan, Inshad Ali</creator><creatorcontrib>Rani, Chitra ; Mehra, Rukmankesh ; Sharma, Rashmi ; Chib, Reena ; Wazir, Priya ; Nargotra, Amit ; Khan, Inshad Ali</creatorcontrib><description>Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.</description><identifier>ISSN: 1472-9792</identifier><identifier>EISSN: 1873-281X</identifier><identifier>DOI: 10.1016/j.tube.2015.06.003</identifier><identifier>PMID: 26318557</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Acetyltransferase ; Antitubercular Agents - chemistry ; Antitubercular Agents - pharmacology ; Antitubercular Agents - toxicity ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cell Survival - drug effects ; Dose-Response Relationship, Drug ; Drug Discovery - methods ; Drug Resistance, Bacterial ; Drug resistant ; Drug Therapy, Combination ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzyme Inhibitors - toxicity ; GlmU ; Glucosamine - analogs & derivatives ; Glucosamine - metabolism ; Glucosephosphates - metabolism ; Hep G2 Cells ; High-Throughput Screening Assays ; Humans ; Infectious Disease ; Kinetics ; M. tuberculosis ; Microbial Sensitivity Tests ; Molecular Docking Simulation ; Molecular Structure ; Molecular Targeted Therapy ; Multienzyme Complexes - antagonists & inhibitors ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Mutation ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - growth & development ; Pulmonary/Respiratory ; Rifampicin ; Structure-Activity Relationship ; UDP-GlcNAc</subject><ispartof>Tuberculosis (Edinburgh, Scotland), 2015-12, Vol.95 (6), p.664-677</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</citedby><cites>FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tube.2015.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26318557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rani, Chitra</creatorcontrib><creatorcontrib>Mehra, Rukmankesh</creatorcontrib><creatorcontrib>Sharma, Rashmi</creatorcontrib><creatorcontrib>Chib, Reena</creatorcontrib><creatorcontrib>Wazir, Priya</creatorcontrib><creatorcontrib>Nargotra, Amit</creatorcontrib><creatorcontrib>Khan, Inshad Ali</creatorcontrib><title>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</title><title>Tuberculosis (Edinburgh, Scotland)</title><addtitle>Tuberculosis (Edinb)</addtitle><description>Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.</description><subject>Acetyltransferase</subject><subject>Antitubercular Agents - chemistry</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Antitubercular Agents - toxicity</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Survival - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Discovery - methods</subject><subject>Drug Resistance, Bacterial</subject><subject>Drug resistant</subject><subject>Drug Therapy, Combination</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme Inhibitors - toxicity</subject><subject>GlmU</subject><subject>Glucosamine - analogs & derivatives</subject><subject>Glucosamine - metabolism</subject><subject>Glucosephosphates - metabolism</subject><subject>Hep G2 Cells</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Infectious Disease</subject><subject>Kinetics</subject><subject>M. tuberculosis</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Structure</subject><subject>Molecular Targeted Therapy</subject><subject>Multienzyme Complexes - antagonists & inhibitors</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - growth & development</subject><subject>Pulmonary/Respiratory</subject><subject>Rifampicin</subject><subject>Structure-Activity Relationship</subject><subject>UDP-GlcNAc</subject><issn>1472-9792</issn><issn>1873-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-L1TAUxYsozjj6BVxIlm7ayU36JwURZNCZgREXOuAupMnte3mmzTNJB7r2i5vyRhcuXOVyOb9D7jlF8RpoBRTay0OVlgErRqGpaFtRyp8U5yA6XjIB35_mue5Y2Xc9OytexHigGaKCPi_OWMtBNE13Xvy6sbt9mfbBL7v9cUkk6oA4E2twTna0GEmclHNk8g714pDYeW8Hm3yIJKmww2TnHVEa0-pSUHMcMaiIeZPsg00r8SP5vGo_5AUGu0xk-3TIVj7aSK7ddP-yeDYqF_HV43tR3H_6-O3qprz7cn179eGu1LWAVHJoBmrUaAzvR2SgBOfQY2cGI3Sj27oeADoFtWKsZ02julGDMBxg7I3oDb8o3p58j8H_XDAmOdmo0Tk1o1-ihI6LWrCMZik7SXXwMQYc5THYSYVVApVb-PIgtzvkFr6krczhZ-jNo_8yTGj-In_SzoJ3JwHmKx8sBhm1xVmjsQF1ksbb__u__wfXzs5WK_cDV4wHv4Q55ydBRiap_LrVv7UPDc_VNz3_DfA_ru4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Rani, Chitra</creator><creator>Mehra, Rukmankesh</creator><creator>Sharma, Rashmi</creator><creator>Chib, Reena</creator><creator>Wazir, Priya</creator><creator>Nargotra, Amit</creator><creator>Khan, Inshad Ali</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</title><author>Rani, Chitra ; Mehra, Rukmankesh ; Sharma, Rashmi ; Chib, Reena ; Wazir, Priya ; Nargotra, Amit ; Khan, Inshad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-315b0dafdd39fe21a83319e7dbd8c5c644b117a14a229255a7fc18d311f9d89d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetyltransferase</topic><topic>Antitubercular Agents - chemistry</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Antitubercular Agents - toxicity</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Survival - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Discovery - methods</topic><topic>Drug Resistance, Bacterial</topic><topic>Drug resistant</topic><topic>Drug Therapy, Combination</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme Inhibitors - toxicity</topic><topic>GlmU</topic><topic>Glucosamine - analogs & derivatives</topic><topic>Glucosamine - metabolism</topic><topic>Glucosephosphates - metabolism</topic><topic>Hep G2 Cells</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Infectious Disease</topic><topic>Kinetics</topic><topic>M. tuberculosis</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Structure</topic><topic>Molecular Targeted Therapy</topic><topic>Multienzyme Complexes - antagonists & inhibitors</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - growth & development</topic><topic>Pulmonary/Respiratory</topic><topic>Rifampicin</topic><topic>Structure-Activity Relationship</topic><topic>UDP-GlcNAc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Chitra</creatorcontrib><creatorcontrib>Mehra, Rukmankesh</creatorcontrib><creatorcontrib>Sharma, Rashmi</creatorcontrib><creatorcontrib>Chib, Reena</creatorcontrib><creatorcontrib>Wazir, Priya</creatorcontrib><creatorcontrib>Nargotra, Amit</creatorcontrib><creatorcontrib>Khan, Inshad Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Chitra</au><au>Mehra, Rukmankesh</au><au>Sharma, Rashmi</au><au>Chib, Reena</au><au>Wazir, Priya</au><au>Nargotra, Amit</au><au>Khan, Inshad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU</atitle><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle><addtitle>Tuberculosis (Edinb)</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>95</volume><issue>6</issue><spage>664</spage><epage>677</epage><pages>664-677</pages><issn>1472-9792</issn><eissn>1873-281X</eissn><abstract>Summary N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis ( M. tuberculosis ) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis . These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>26318557</pmid><doi>10.1016/j.tube.2015.06.003</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1472-9792 |
ispartof | Tuberculosis (Edinburgh, Scotland), 2015-12, Vol.95 (6), p.664-677 |
issn | 1472-9792 1873-281X |
language | eng |
recordid | cdi_proquest_miscellaneous_1738482255 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acetyltransferase Antitubercular Agents - chemistry Antitubercular Agents - pharmacology Antitubercular Agents - toxicity Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - genetics Bacterial Proteins - metabolism Cell Survival - drug effects Dose-Response Relationship, Drug Drug Discovery - methods Drug Resistance, Bacterial Drug resistant Drug Therapy, Combination Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Enzyme Inhibitors - toxicity GlmU Glucosamine - analogs & derivatives Glucosamine - metabolism Glucosephosphates - metabolism Hep G2 Cells High-Throughput Screening Assays Humans Infectious Disease Kinetics M. tuberculosis Microbial Sensitivity Tests Molecular Docking Simulation Molecular Structure Molecular Targeted Therapy Multienzyme Complexes - antagonists & inhibitors Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Mutation Mycobacterium tuberculosis - drug effects Mycobacterium tuberculosis - enzymology Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - growth & development Pulmonary/Respiratory Rifampicin Structure-Activity Relationship UDP-GlcNAc |
title | High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20screen%20identifies%20small%20molecule%20inhibitors%20targeting%20acetyltransferase%20activity%20of%20Mycobacterium%20tuberculosis%20GlmU&rft.jtitle=Tuberculosis%20(Edinburgh,%20Scotland)&rft.au=Rani,%20Chitra&rft.date=2015-12-01&rft.volume=95&rft.issue=6&rft.spage=664&rft.epage=677&rft.pages=664-677&rft.issn=1472-9792&rft.eissn=1873-281X&rft_id=info:doi/10.1016/j.tube.2015.06.003&rft_dat=%3Cproquest_cross%3E1738482255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738482255&rft_id=info:pmid/26318557&rft_els_id=S1472979215300159&rfr_iscdi=true |