A sorbent regenerator simulation model in copper oxide flue gas cleanup processes
Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natu...
Gespeichert in:
Veröffentlicht in: | Environmental Progress 1998-06, Vol.17 (2), p.61-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 2 |
container_start_page | 61 |
container_title | Environmental Progress |
container_volume | 17 |
creator | Chen, Zhong-Ying Yeh, James T. |
description | Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance. |
doi_str_mv | 10.1002/ep.670170210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_17384639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17384639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBmALgcSycOMHGIQ4keLPOD5WVbt8VIVKILhZXndcXLJ28CRq--9JlWqFeuA0l-d9Z6Qh5CVnB5wx8R6Gg9Ywbpjg7BFZca1Mo63gj8mKCdM1Sln-lDxDvGKMa266FTk_pFjqFvJIK1xChurHUimm3dT7MZVMd-UCepoyDWUYoNJyky6Axn4CeumRhh58ngY61BIAEfA5eRJ9j_Difq7J95Pjb0cfmtMvm49Hh6dNUJKxxkQBXMZt1NIagAhC-Rh5iBLUtuM2dF5EbbXtjLABdBuUEIppaCOLHKJck1dLb8ExOQxphPArlJwhjK6dsdGzebuY-bo_E-DodgkD9L3PUCZ03MhOtdLO8PUDeFWmmuf7nWBSaGbbO_RuQaEWxArRDTXtfL11nLm7BzgY3P4BM39z3-kx-D5Wn0PCfUZIY9i8fE30wq5TD7f_rXTHX_-tb5ZcwhFu9jlff88BabT7cbZxTJ__FJ83nfsk_wI1oqNf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203250969</pqid></control><display><type>article</type><title>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Zhong-Ying ; Yeh, James T.</creator><creatorcontrib>Chen, Zhong-Ying ; Yeh, James T.</creatorcontrib><description>Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.</description><identifier>ISSN: 0278-4491</identifier><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1547-5921</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.670170210</identifier><identifier>CODEN: ENVPDI</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>20 FOSSIL-FUELED POWER PLANTS ; ADSORBENTS ; AIR POLLUTION ABATEMENT ; Air pollution caused by fuel industries ; Applied sciences ; Atmospheric pollution ; Chemistry ; Combustion and energy production ; COPPER OXIDES ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FLUE GAS ; FOSSIL-FUEL POWER PLANTS ; General and physical chemistry ; NITROGEN OXIDES ; Pollution ; POLLUTION CONTROL EQUIPMENT ; Pollution reduction ; Prevention and purification methods ; Stack gas and industrial effluent processing ; SULFUR DIOXIDE ; Surface physical chemistry</subject><ispartof>Environmental Progress, 1998-06, Vol.17 (2), p.61-69</ispartof><rights>Copyright © 1998 American Institute of Chemical Engineers</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Summer 1998</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</citedby><cites>FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.670170210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.670170210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2377046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/642275$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhong-Ying</creatorcontrib><creatorcontrib>Yeh, James T.</creatorcontrib><title>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</title><title>Environmental Progress</title><addtitle>Environ. Prog</addtitle><description>Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.</description><subject>20 FOSSIL-FUELED POWER PLANTS</subject><subject>ADSORBENTS</subject><subject>AIR POLLUTION ABATEMENT</subject><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemistry</subject><subject>Combustion and energy production</subject><subject>COPPER OXIDES</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FLUE GAS</subject><subject>FOSSIL-FUEL POWER PLANTS</subject><subject>General and physical chemistry</subject><subject>NITROGEN OXIDES</subject><subject>Pollution</subject><subject>POLLUTION CONTROL EQUIPMENT</subject><subject>Pollution reduction</subject><subject>Prevention and purification methods</subject><subject>Stack gas and industrial effluent processing</subject><subject>SULFUR DIOXIDE</subject><subject>Surface physical chemistry</subject><issn>0278-4491</issn><issn>1944-7442</issn><issn>1547-5921</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90U1v1DAQBmALgcSycOMHGIQ4keLPOD5WVbt8VIVKILhZXndcXLJ28CRq--9JlWqFeuA0l-d9Z6Qh5CVnB5wx8R6Gg9Ywbpjg7BFZca1Mo63gj8mKCdM1Sln-lDxDvGKMa266FTk_pFjqFvJIK1xChurHUimm3dT7MZVMd-UCepoyDWUYoNJyky6Axn4CeumRhh58ngY61BIAEfA5eRJ9j_Difq7J95Pjb0cfmtMvm49Hh6dNUJKxxkQBXMZt1NIagAhC-Rh5iBLUtuM2dF5EbbXtjLABdBuUEIppaCOLHKJck1dLb8ExOQxphPArlJwhjK6dsdGzebuY-bo_E-DodgkD9L3PUCZ03MhOtdLO8PUDeFWmmuf7nWBSaGbbO_RuQaEWxArRDTXtfL11nLm7BzgY3P4BM39z3-kx-D5Wn0PCfUZIY9i8fE30wq5TD7f_rXTHX_-tb5ZcwhFu9jlff88BabT7cbZxTJ__FJ83nfsk_wI1oqNf</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Chen, Zhong-Ying</creator><creator>Yeh, James T.</creator><general>American Institute of Chemical Engineers</general><general>Willey</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope><scope>OTOTI</scope></search><sort><creationdate>19980601</creationdate><title>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</title><author>Chen, Zhong-Ying ; Yeh, James T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>20 FOSSIL-FUELED POWER PLANTS</topic><topic>ADSORBENTS</topic><topic>AIR POLLUTION ABATEMENT</topic><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemistry</topic><topic>Combustion and energy production</topic><topic>COPPER OXIDES</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FLUE GAS</topic><topic>FOSSIL-FUEL POWER PLANTS</topic><topic>General and physical chemistry</topic><topic>NITROGEN OXIDES</topic><topic>Pollution</topic><topic>POLLUTION CONTROL EQUIPMENT</topic><topic>Pollution reduction</topic><topic>Prevention and purification methods</topic><topic>Stack gas and industrial effluent processing</topic><topic>SULFUR DIOXIDE</topic><topic>Surface physical chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhong-Ying</creatorcontrib><creatorcontrib>Yeh, James T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental Progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhong-Ying</au><au>Yeh, James T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</atitle><jtitle>Environmental Progress</jtitle><addtitle>Environ. Prog</addtitle><date>1998-06-01</date><risdate>1998</risdate><volume>17</volume><issue>2</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>0278-4491</issn><issn>1944-7442</issn><eissn>1547-5921</eissn><eissn>1944-7450</eissn><coden>ENVPDI</coden><abstract>Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/ep.670170210</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-4491 |
ispartof | Environmental Progress, 1998-06, Vol.17 (2), p.61-69 |
issn | 0278-4491 1944-7442 1547-5921 1944-7450 |
language | eng |
recordid | cdi_proquest_miscellaneous_17384639 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 20 FOSSIL-FUELED POWER PLANTS ADSORBENTS AIR POLLUTION ABATEMENT Air pollution caused by fuel industries Applied sciences Atmospheric pollution Chemistry Combustion and energy production COPPER OXIDES Energy Energy. Thermal use of fuels Exact sciences and technology FLUE GAS FOSSIL-FUEL POWER PLANTS General and physical chemistry NITROGEN OXIDES Pollution POLLUTION CONTROL EQUIPMENT Pollution reduction Prevention and purification methods Stack gas and industrial effluent processing SULFUR DIOXIDE Surface physical chemistry |
title | A sorbent regenerator simulation model in copper oxide flue gas cleanup processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sorbent%20regenerator%20simulation%20model%20in%20copper%20oxide%20flue%20gas%20cleanup%20processes&rft.jtitle=Environmental%20Progress&rft.au=Chen,%20Zhong-Ying&rft.date=1998-06-01&rft.volume=17&rft.issue=2&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=0278-4491&rft.eissn=1547-5921&rft.coden=ENVPDI&rft_id=info:doi/10.1002/ep.670170210&rft_dat=%3Cproquest_osti_%3E17384639%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203250969&rft_id=info:pmid/&rfr_iscdi=true |