A sorbent regenerator simulation model in copper oxide flue gas cleanup processes

Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Progress 1998-06, Vol.17 (2), p.61-69
Hauptverfasser: Chen, Zhong-Ying, Yeh, James T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 2
container_start_page 61
container_title Environmental Progress
container_volume 17
creator Chen, Zhong-Ying
Yeh, James T.
description Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.
doi_str_mv 10.1002/ep.670170210
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_17384639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17384639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBmALgcSycOMHGIQ4keLPOD5WVbt8VIVKILhZXndcXLJ28CRq--9JlWqFeuA0l-d9Z6Qh5CVnB5wx8R6Gg9Ywbpjg7BFZca1Mo63gj8mKCdM1Sln-lDxDvGKMa266FTk_pFjqFvJIK1xChurHUimm3dT7MZVMd-UCepoyDWUYoNJyky6Axn4CeumRhh58ngY61BIAEfA5eRJ9j_Difq7J95Pjb0cfmtMvm49Hh6dNUJKxxkQBXMZt1NIagAhC-Rh5iBLUtuM2dF5EbbXtjLABdBuUEIppaCOLHKJck1dLb8ExOQxphPArlJwhjK6dsdGzebuY-bo_E-DodgkD9L3PUCZ03MhOtdLO8PUDeFWmmuf7nWBSaGbbO_RuQaEWxArRDTXtfL11nLm7BzgY3P4BM39z3-kx-D5Wn0PCfUZIY9i8fE30wq5TD7f_rXTHX_-tb5ZcwhFu9jlff88BabT7cbZxTJ__FJ83nfsk_wI1oqNf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203250969</pqid></control><display><type>article</type><title>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Zhong-Ying ; Yeh, James T.</creator><creatorcontrib>Chen, Zhong-Ying ; Yeh, James T.</creatorcontrib><description>Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.</description><identifier>ISSN: 0278-4491</identifier><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1547-5921</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.670170210</identifier><identifier>CODEN: ENVPDI</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>20 FOSSIL-FUELED POWER PLANTS ; ADSORBENTS ; AIR POLLUTION ABATEMENT ; Air pollution caused by fuel industries ; Applied sciences ; Atmospheric pollution ; Chemistry ; Combustion and energy production ; COPPER OXIDES ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FLUE GAS ; FOSSIL-FUEL POWER PLANTS ; General and physical chemistry ; NITROGEN OXIDES ; Pollution ; POLLUTION CONTROL EQUIPMENT ; Pollution reduction ; Prevention and purification methods ; Stack gas and industrial effluent processing ; SULFUR DIOXIDE ; Surface physical chemistry</subject><ispartof>Environmental Progress, 1998-06, Vol.17 (2), p.61-69</ispartof><rights>Copyright © 1998 American Institute of Chemical Engineers</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Summer 1998</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</citedby><cites>FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.670170210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.670170210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2377046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/642275$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhong-Ying</creatorcontrib><creatorcontrib>Yeh, James T.</creatorcontrib><title>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</title><title>Environmental Progress</title><addtitle>Environ. Prog</addtitle><description>Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.</description><subject>20 FOSSIL-FUELED POWER PLANTS</subject><subject>ADSORBENTS</subject><subject>AIR POLLUTION ABATEMENT</subject><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemistry</subject><subject>Combustion and energy production</subject><subject>COPPER OXIDES</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FLUE GAS</subject><subject>FOSSIL-FUEL POWER PLANTS</subject><subject>General and physical chemistry</subject><subject>NITROGEN OXIDES</subject><subject>Pollution</subject><subject>POLLUTION CONTROL EQUIPMENT</subject><subject>Pollution reduction</subject><subject>Prevention and purification methods</subject><subject>Stack gas and industrial effluent processing</subject><subject>SULFUR DIOXIDE</subject><subject>Surface physical chemistry</subject><issn>0278-4491</issn><issn>1944-7442</issn><issn>1547-5921</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90U1v1DAQBmALgcSycOMHGIQ4keLPOD5WVbt8VIVKILhZXndcXLJ28CRq--9JlWqFeuA0l-d9Z6Qh5CVnB5wx8R6Gg9Ywbpjg7BFZca1Mo63gj8mKCdM1Sln-lDxDvGKMa266FTk_pFjqFvJIK1xChurHUimm3dT7MZVMd-UCepoyDWUYoNJyky6Axn4CeumRhh58ngY61BIAEfA5eRJ9j_Difq7J95Pjb0cfmtMvm49Hh6dNUJKxxkQBXMZt1NIagAhC-Rh5iBLUtuM2dF5EbbXtjLABdBuUEIppaCOLHKJck1dLb8ExOQxphPArlJwhjK6dsdGzebuY-bo_E-DodgkD9L3PUCZ03MhOtdLO8PUDeFWmmuf7nWBSaGbbO_RuQaEWxArRDTXtfL11nLm7BzgY3P4BM39z3-kx-D5Wn0PCfUZIY9i8fE30wq5TD7f_rXTHX_-tb5ZcwhFu9jlff88BabT7cbZxTJ__FJ83nfsk_wI1oqNf</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Chen, Zhong-Ying</creator><creator>Yeh, James T.</creator><general>American Institute of Chemical Engineers</general><general>Willey</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope><scope>OTOTI</scope></search><sort><creationdate>19980601</creationdate><title>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</title><author>Chen, Zhong-Ying ; Yeh, James T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4300-7f2e13fbf5397eefe24aff1cf3e4b819c8a2f59598729ce56c422405e6f0f1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>20 FOSSIL-FUELED POWER PLANTS</topic><topic>ADSORBENTS</topic><topic>AIR POLLUTION ABATEMENT</topic><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemistry</topic><topic>Combustion and energy production</topic><topic>COPPER OXIDES</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FLUE GAS</topic><topic>FOSSIL-FUEL POWER PLANTS</topic><topic>General and physical chemistry</topic><topic>NITROGEN OXIDES</topic><topic>Pollution</topic><topic>POLLUTION CONTROL EQUIPMENT</topic><topic>Pollution reduction</topic><topic>Prevention and purification methods</topic><topic>Stack gas and industrial effluent processing</topic><topic>SULFUR DIOXIDE</topic><topic>Surface physical chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhong-Ying</creatorcontrib><creatorcontrib>Yeh, James T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental Progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhong-Ying</au><au>Yeh, James T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sorbent regenerator simulation model in copper oxide flue gas cleanup processes</atitle><jtitle>Environmental Progress</jtitle><addtitle>Environ. Prog</addtitle><date>1998-06-01</date><risdate>1998</risdate><volume>17</volume><issue>2</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>0278-4491</issn><issn>1944-7442</issn><eissn>1547-5921</eissn><eissn>1944-7450</eissn><coden>ENVPDI</coden><abstract>Sorbent regeneration is an important step in copper oxide flue gas cleanup processes because poor regeneration performance could require higher sorbent circulation rate and inventory, resulting in increased process costs. This article describes a countercurrent moving‐bed regeneator model using natural gas as the reducing agent. The model incorporates several aspects important for predicting the regenerator performance, such as gas expansion effects, deviation from first‐order kinetics with respect to copper sulfate, and mass transfer limitations. The sorbent residence time predicted by this model is in good agreement with data obtained from the life‐cycle test system at the Federal Energy Technology Center. The tests conducted include effects of reactor temperature, the methane to copper sulfate feed ratio, and sorbent residence time, on sorbent regeneration. The regenerator modeling also details the impact of gas velocity on the reactor performance.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/ep.670170210</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-4491
ispartof Environmental Progress, 1998-06, Vol.17 (2), p.61-69
issn 0278-4491
1944-7442
1547-5921
1944-7450
language eng
recordid cdi_proquest_miscellaneous_17384639
source Wiley Online Library Journals Frontfile Complete
subjects 20 FOSSIL-FUELED POWER PLANTS
ADSORBENTS
AIR POLLUTION ABATEMENT
Air pollution caused by fuel industries
Applied sciences
Atmospheric pollution
Chemistry
Combustion and energy production
COPPER OXIDES
Energy
Energy. Thermal use of fuels
Exact sciences and technology
FLUE GAS
FOSSIL-FUEL POWER PLANTS
General and physical chemistry
NITROGEN OXIDES
Pollution
POLLUTION CONTROL EQUIPMENT
Pollution reduction
Prevention and purification methods
Stack gas and industrial effluent processing
SULFUR DIOXIDE
Surface physical chemistry
title A sorbent regenerator simulation model in copper oxide flue gas cleanup processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sorbent%20regenerator%20simulation%20model%20in%20copper%20oxide%20flue%20gas%20cleanup%20processes&rft.jtitle=Environmental%20Progress&rft.au=Chen,%20Zhong-Ying&rft.date=1998-06-01&rft.volume=17&rft.issue=2&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=0278-4491&rft.eissn=1547-5921&rft.coden=ENVPDI&rft_id=info:doi/10.1002/ep.670170210&rft_dat=%3Cproquest_osti_%3E17384639%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203250969&rft_id=info:pmid/&rfr_iscdi=true