A Total Load Algorithm for Sand Transport by Fast Steady Currents

A simple algorithm for total load sand flux is proposed which is suitable for application to high energy environments where fast currents promote significant sand suspension. The algorithm is a power relationship constrained by a threshold condition:q=k[(u1−u1t)/u1t]nwhereqis total sand flux,u1andu1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 1999-01, Vol.48 (1), p.93-99
Hauptverfasser: Jago, C.F., Mahamod, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 93
container_title Estuarine, coastal and shelf science
container_volume 48
creator Jago, C.F.
Mahamod, Y.
description A simple algorithm for total load sand flux is proposed which is suitable for application to high energy environments where fast currents promote significant sand suspension. The algorithm is a power relationship constrained by a threshold condition:q=k[(u1−u1t)/u1t]nwhereqis total sand flux,u1andu1tare mean current velocity and threshold current velocity 1m above the bed, respectively, andkis an appropriate entrainment function. The algorithm has been calibrated for sands (mean grain diameter 190–930μm) over a range of mean current velocities (0·2–1·5ms−1) using the extensive experimental data set of Guyet al. (1966) (Prof Papers U.S. Geology Survey,462,96). It is shown thatkandnare dependent on mean grain diameter; they can be determined from appropriate calibration curves. The exponentnvaries from 4, increasing with decreasing grain diameter as transport by suspension becomes increasingly important;napproaches a minimum constant value for coarser sands as bed load transport becomes dominant. There is evidence that the exponentndecreases with increasing current velocity in the case of fine sands moved by fast currents. The entrainment functionkdecreases with decreasing grain diameter as bed roughness and entrainment efficiency decrease, and approaches a minimum constant value for fine sands. The algorithm reproduces flume sand transport rates more reliably than the previous formulations of Gaddet al. (1978) (Journal of Sedimentary Petrology,48,239–252) and Hardisty (1983) (Journal of Sedimentary Petrology,53,1007–1010) which ignore suspension and use erroneous calibration coefficients.
doi_str_mv 10.1006/ecss.1998.0402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17377601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272771498904024</els_id><sourcerecordid>17377601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-b0aa40e9f87fcac4f37300d07d9a97761075242a112bb260c0546095391d2d093</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdXzzmIt9aXpG2WYxn-goGHzXN4TVKtdM1MMmH_vS0bePL04PH5fh_vQ8gtg5wBVA_OxJgzpRY5FMDPyIyBqjIAVp6TGXDJMylZcUmuYvwat6wUfEbqmm58wp6uPFpa9x8-dOlzS1sf6BoHSzcBh7jzIdHmQJ8wJrpODu2BLvchuCHFa3LRYh_dzWnOyfvT42b5kq3enl-X9SpDUamUNYBYgFPtQrYGTdEKKQAsSKtQSVkxkCUvODLGm4ZXYKAsKlClUMxyC0rMyf2xdxf8997FpLddNK7vcXB-HzWTYqwBNoL5ETTBxxhcq3eh22I4aAZ6MqUnU3oypSdTY-Du1IzRYN-OH5su_qWkKEs1YYsj5sYvfzoXdDSdG4yzXXAmaeu7_y78AjRveg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17377601</pqid></control><display><type>article</type><title>A Total Load Algorithm for Sand Transport by Fast Steady Currents</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jago, C.F. ; Mahamod, Y.</creator><creatorcontrib>Jago, C.F. ; Mahamod, Y.</creatorcontrib><description>A simple algorithm for total load sand flux is proposed which is suitable for application to high energy environments where fast currents promote significant sand suspension. The algorithm is a power relationship constrained by a threshold condition:q=k[(u1−u1t)/u1t]nwhereqis total sand flux,u1andu1tare mean current velocity and threshold current velocity 1m above the bed, respectively, andkis an appropriate entrainment function. The algorithm has been calibrated for sands (mean grain diameter 190–930μm) over a range of mean current velocities (0·2–1·5ms−1) using the extensive experimental data set of Guyet al. (1966) (Prof Papers U.S. Geology Survey,462,96). It is shown thatkandnare dependent on mean grain diameter; they can be determined from appropriate calibration curves. The exponentnvaries from &lt;3 to &gt;4, increasing with decreasing grain diameter as transport by suspension becomes increasingly important;napproaches a minimum constant value for coarser sands as bed load transport becomes dominant. There is evidence that the exponentndecreases with increasing current velocity in the case of fine sands moved by fast currents. The entrainment functionkdecreases with decreasing grain diameter as bed roughness and entrainment efficiency decrease, and approaches a minimum constant value for fine sands. The algorithm reproduces flume sand transport rates more reliably than the previous formulations of Gaddet al. (1978) (Journal of Sedimentary Petrology,48,239–252) and Hardisty (1983) (Journal of Sedimentary Petrology,53,1007–1010) which ignore suspension and use erroneous calibration coefficients.</description><identifier>ISSN: 0272-7714</identifier><identifier>EISSN: 1096-0015</identifier><identifier>DOI: 10.1006/ecss.1998.0402</identifier><identifier>CODEN: ECSSD3</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Marine and continental quaternary ; resuspension ; sediment transport ; Surficial geology ; suspended sediment load</subject><ispartof>Estuarine, coastal and shelf science, 1999-01, Vol.48 (1), p.93-99</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-b0aa40e9f87fcac4f37300d07d9a97761075242a112bb260c0546095391d2d093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/ecss.1998.0402$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1735592$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jago, C.F.</creatorcontrib><creatorcontrib>Mahamod, Y.</creatorcontrib><title>A Total Load Algorithm for Sand Transport by Fast Steady Currents</title><title>Estuarine, coastal and shelf science</title><description>A simple algorithm for total load sand flux is proposed which is suitable for application to high energy environments where fast currents promote significant sand suspension. The algorithm is a power relationship constrained by a threshold condition:q=k[(u1−u1t)/u1t]nwhereqis total sand flux,u1andu1tare mean current velocity and threshold current velocity 1m above the bed, respectively, andkis an appropriate entrainment function. The algorithm has been calibrated for sands (mean grain diameter 190–930μm) over a range of mean current velocities (0·2–1·5ms−1) using the extensive experimental data set of Guyet al. (1966) (Prof Papers U.S. Geology Survey,462,96). It is shown thatkandnare dependent on mean grain diameter; they can be determined from appropriate calibration curves. The exponentnvaries from &lt;3 to &gt;4, increasing with decreasing grain diameter as transport by suspension becomes increasingly important;napproaches a minimum constant value for coarser sands as bed load transport becomes dominant. There is evidence that the exponentndecreases with increasing current velocity in the case of fine sands moved by fast currents. The entrainment functionkdecreases with decreasing grain diameter as bed roughness and entrainment efficiency decrease, and approaches a minimum constant value for fine sands. The algorithm reproduces flume sand transport rates more reliably than the previous formulations of Gaddet al. (1978) (Journal of Sedimentary Petrology,48,239–252) and Hardisty (1983) (Journal of Sedimentary Petrology,53,1007–1010) which ignore suspension and use erroneous calibration coefficients.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine and continental quaternary</subject><subject>resuspension</subject><subject>sediment transport</subject><subject>Surficial geology</subject><subject>suspended sediment load</subject><issn>0272-7714</issn><issn>1096-0015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdXzzmIt9aXpG2WYxn-goGHzXN4TVKtdM1MMmH_vS0bePL04PH5fh_vQ8gtg5wBVA_OxJgzpRY5FMDPyIyBqjIAVp6TGXDJMylZcUmuYvwat6wUfEbqmm58wp6uPFpa9x8-dOlzS1sf6BoHSzcBh7jzIdHmQJ8wJrpODu2BLvchuCHFa3LRYh_dzWnOyfvT42b5kq3enl-X9SpDUamUNYBYgFPtQrYGTdEKKQAsSKtQSVkxkCUvODLGm4ZXYKAsKlClUMxyC0rMyf2xdxf8997FpLddNK7vcXB-HzWTYqwBNoL5ETTBxxhcq3eh22I4aAZ6MqUnU3oypSdTY-Du1IzRYN-OH5su_qWkKEs1YYsj5sYvfzoXdDSdG4yzXXAmaeu7_y78AjRveg8</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Jago, C.F.</creator><creator>Mahamod, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>199901</creationdate><title>A Total Load Algorithm for Sand Transport by Fast Steady Currents</title><author>Jago, C.F. ; Mahamod, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-b0aa40e9f87fcac4f37300d07d9a97761075242a112bb260c0546095391d2d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine and continental quaternary</topic><topic>resuspension</topic><topic>sediment transport</topic><topic>Surficial geology</topic><topic>suspended sediment load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jago, C.F.</creatorcontrib><creatorcontrib>Mahamod, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Estuarine, coastal and shelf science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jago, C.F.</au><au>Mahamod, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Total Load Algorithm for Sand Transport by Fast Steady Currents</atitle><jtitle>Estuarine, coastal and shelf science</jtitle><date>1999-01</date><risdate>1999</risdate><volume>48</volume><issue>1</issue><spage>93</spage><epage>99</epage><pages>93-99</pages><issn>0272-7714</issn><eissn>1096-0015</eissn><coden>ECSSD3</coden><abstract>A simple algorithm for total load sand flux is proposed which is suitable for application to high energy environments where fast currents promote significant sand suspension. The algorithm is a power relationship constrained by a threshold condition:q=k[(u1−u1t)/u1t]nwhereqis total sand flux,u1andu1tare mean current velocity and threshold current velocity 1m above the bed, respectively, andkis an appropriate entrainment function. The algorithm has been calibrated for sands (mean grain diameter 190–930μm) over a range of mean current velocities (0·2–1·5ms−1) using the extensive experimental data set of Guyet al. (1966) (Prof Papers U.S. Geology Survey,462,96). It is shown thatkandnare dependent on mean grain diameter; they can be determined from appropriate calibration curves. The exponentnvaries from &lt;3 to &gt;4, increasing with decreasing grain diameter as transport by suspension becomes increasingly important;napproaches a minimum constant value for coarser sands as bed load transport becomes dominant. There is evidence that the exponentndecreases with increasing current velocity in the case of fine sands moved by fast currents. The entrainment functionkdecreases with decreasing grain diameter as bed roughness and entrainment efficiency decrease, and approaches a minimum constant value for fine sands. The algorithm reproduces flume sand transport rates more reliably than the previous formulations of Gaddet al. (1978) (Journal of Sedimentary Petrology,48,239–252) and Hardisty (1983) (Journal of Sedimentary Petrology,53,1007–1010) which ignore suspension and use erroneous calibration coefficients.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1006/ecss.1998.0402</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-7714
ispartof Estuarine, coastal and shelf science, 1999-01, Vol.48 (1), p.93-99
issn 0272-7714
1096-0015
language eng
recordid cdi_proquest_miscellaneous_17377601
source ScienceDirect Journals (5 years ago - present)
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Marine and continental quaternary
resuspension
sediment transport
Surficial geology
suspended sediment load
title A Total Load Algorithm for Sand Transport by Fast Steady Currents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Total%20Load%20Algorithm%20for%20Sand%20Transport%20by%20Fast%20Steady%20Currents&rft.jtitle=Estuarine,%20coastal%20and%20shelf%20science&rft.au=Jago,%20C.F.&rft.date=1999-01&rft.volume=48&rft.issue=1&rft.spage=93&rft.epage=99&rft.pages=93-99&rft.issn=0272-7714&rft.eissn=1096-0015&rft.coden=ECSSD3&rft_id=info:doi/10.1006/ecss.1998.0402&rft_dat=%3Cproquest_cross%3E17377601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17377601&rft_id=info:pmid/&rft_els_id=S0272771498904024&rfr_iscdi=true