Magnetic-Responsive Release Controlled by Hot Spot Effect

Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2015-11, Vol.31 (46), p.12777-12782
Hauptverfasser: Guisasola, Eduardo, Baeza, Alejandro, Talelli, Marina, Arcos, Daniel, Moros, María, de la Fuente, Jesús M, Vallet-Regí, María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12782
container_issue 46
container_start_page 12777
container_title Langmuir
container_volume 31
creator Guisasola, Eduardo
Baeza, Alejandro
Talelli, Marina
Arcos, Daniel
Moros, María
de la Fuente, Jesús M
Vallet-Regí, María
description Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.
doi_str_mv 10.1021/acs.langmuir.5b03470
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1736415596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1736415596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwBghlZEm52I6djKgqFKkIqXS37ORcpUriYCdIvD2p2jKy3C3f_5_uI-Q-gXkCNHnSRZjXut01Q-XnqQHGJVyQaZJSiNOMyksyBclZLLlgE3ITwh4AcsbzazKhImWCAUxJ_q53LfZVEW8wdK4N1TdGG6xRB4wWru29q2ssI_MTrVwffXbjWFqLRX9LrqyuA96d9oxsX5bbxSpef7y-LZ7XsWY572MrgXJNKS8ZGMgwTTGzQupC0DIzyKzmMjelMVKWGS9EmSeZBGu0yTi1ms3I47G28-5rwNCrpgoF1uPr6IagEskET9I0FyPKj2jhXQgerep81Wj_oxJQB2dqdKbOztTJ2Rh7OF0YTIPlX-gsaQTgCBziezf4dvz3_85fGi17cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736415596</pqid></control><display><type>article</type><title>Magnetic-Responsive Release Controlled by Hot Spot Effect</title><source>ACS Publications</source><source>MEDLINE</source><creator>Guisasola, Eduardo ; Baeza, Alejandro ; Talelli, Marina ; Arcos, Daniel ; Moros, María ; de la Fuente, Jesús M ; Vallet-Regí, María</creator><creatorcontrib>Guisasola, Eduardo ; Baeza, Alejandro ; Talelli, Marina ; Arcos, Daniel ; Moros, María ; de la Fuente, Jesús M ; Vallet-Regí, María</creatorcontrib><description>Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.5b03470</identifier><identifier>PMID: 26536300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylamides - chemistry ; Acrylic Resins - chemistry ; Delayed-Action Preparations ; Drug Delivery Systems - instrumentation ; Fluorescein - chemistry ; Magnetic Phenomena ; Nanoparticles - chemistry ; Silicon Dioxide - chemistry</subject><ispartof>Langmuir, 2015-11, Vol.31 (46), p.12777-12782</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</citedby><cites>FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5b03470$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.5b03470$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26536300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guisasola, Eduardo</creatorcontrib><creatorcontrib>Baeza, Alejandro</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Arcos, Daniel</creatorcontrib><creatorcontrib>Moros, María</creatorcontrib><creatorcontrib>de la Fuente, Jesús M</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><title>Magnetic-Responsive Release Controlled by Hot Spot Effect</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.</description><subject>Acrylamides - chemistry</subject><subject>Acrylic Resins - chemistry</subject><subject>Delayed-Action Preparations</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Fluorescein - chemistry</subject><subject>Magnetic Phenomena</subject><subject>Nanoparticles - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLFOwzAQhi0EoqXwBghlZEm52I6djKgqFKkIqXS37ORcpUriYCdIvD2p2jKy3C3f_5_uI-Q-gXkCNHnSRZjXut01Q-XnqQHGJVyQaZJSiNOMyksyBclZLLlgE3ITwh4AcsbzazKhImWCAUxJ_q53LfZVEW8wdK4N1TdGG6xRB4wWru29q2ssI_MTrVwffXbjWFqLRX9LrqyuA96d9oxsX5bbxSpef7y-LZ7XsWY572MrgXJNKS8ZGMgwTTGzQupC0DIzyKzmMjelMVKWGS9EmSeZBGu0yTi1ms3I47G28-5rwNCrpgoF1uPr6IagEskET9I0FyPKj2jhXQgerep81Wj_oxJQB2dqdKbOztTJ2Rh7OF0YTIPlX-gsaQTgCBziezf4dvz3_85fGi17cQ</recordid><startdate>20151124</startdate><enddate>20151124</enddate><creator>Guisasola, Eduardo</creator><creator>Baeza, Alejandro</creator><creator>Talelli, Marina</creator><creator>Arcos, Daniel</creator><creator>Moros, María</creator><creator>de la Fuente, Jesús M</creator><creator>Vallet-Regí, María</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151124</creationdate><title>Magnetic-Responsive Release Controlled by Hot Spot Effect</title><author>Guisasola, Eduardo ; Baeza, Alejandro ; Talelli, Marina ; Arcos, Daniel ; Moros, María ; de la Fuente, Jesús M ; Vallet-Regí, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acrylamides - chemistry</topic><topic>Acrylic Resins - chemistry</topic><topic>Delayed-Action Preparations</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Fluorescein - chemistry</topic><topic>Magnetic Phenomena</topic><topic>Nanoparticles - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guisasola, Eduardo</creatorcontrib><creatorcontrib>Baeza, Alejandro</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Arcos, Daniel</creatorcontrib><creatorcontrib>Moros, María</creatorcontrib><creatorcontrib>de la Fuente, Jesús M</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guisasola, Eduardo</au><au>Baeza, Alejandro</au><au>Talelli, Marina</au><au>Arcos, Daniel</au><au>Moros, María</au><au>de la Fuente, Jesús M</au><au>Vallet-Regí, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic-Responsive Release Controlled by Hot Spot Effect</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2015-11-24</date><risdate>2015</risdate><volume>31</volume><issue>46</issue><spage>12777</spage><epage>12782</epage><pages>12777-12782</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26536300</pmid><doi>10.1021/acs.langmuir.5b03470</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2015-11, Vol.31 (46), p.12777-12782
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1736415596
source ACS Publications; MEDLINE
subjects Acrylamides - chemistry
Acrylic Resins - chemistry
Delayed-Action Preparations
Drug Delivery Systems - instrumentation
Fluorescein - chemistry
Magnetic Phenomena
Nanoparticles - chemistry
Silicon Dioxide - chemistry
title Magnetic-Responsive Release Controlled by Hot Spot Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic-Responsive%20Release%20Controlled%20by%20Hot%20Spot%20Effect&rft.jtitle=Langmuir&rft.au=Guisasola,%20Eduardo&rft.date=2015-11-24&rft.volume=31&rft.issue=46&rft.spage=12777&rft.epage=12782&rft.pages=12777-12782&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.5b03470&rft_dat=%3Cproquest_cross%3E1736415596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736415596&rft_id=info:pmid/26536300&rfr_iscdi=true