Magnetic-Responsive Release Controlled by Hot Spot Effect
Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presen...
Gespeichert in:
Veröffentlicht in: | Langmuir 2015-11, Vol.31 (46), p.12777-12782 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12782 |
---|---|
container_issue | 46 |
container_start_page | 12777 |
container_title | Langmuir |
container_volume | 31 |
creator | Guisasola, Eduardo Baeza, Alejandro Talelli, Marina Arcos, Daniel Moros, María de la Fuente, Jesús M Vallet-Regí, María |
description | Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices. |
doi_str_mv | 10.1021/acs.langmuir.5b03470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1736415596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1736415596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwBghlZEm52I6djKgqFKkIqXS37ORcpUriYCdIvD2p2jKy3C3f_5_uI-Q-gXkCNHnSRZjXut01Q-XnqQHGJVyQaZJSiNOMyksyBclZLLlgE3ITwh4AcsbzazKhImWCAUxJ_q53LfZVEW8wdK4N1TdGG6xRB4wWru29q2ssI_MTrVwffXbjWFqLRX9LrqyuA96d9oxsX5bbxSpef7y-LZ7XsWY572MrgXJNKS8ZGMgwTTGzQupC0DIzyKzmMjelMVKWGS9EmSeZBGu0yTi1ms3I47G28-5rwNCrpgoF1uPr6IagEskET9I0FyPKj2jhXQgerep81Wj_oxJQB2dqdKbOztTJ2Rh7OF0YTIPlX-gsaQTgCBziezf4dvz3_85fGi17cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736415596</pqid></control><display><type>article</type><title>Magnetic-Responsive Release Controlled by Hot Spot Effect</title><source>ACS Publications</source><source>MEDLINE</source><creator>Guisasola, Eduardo ; Baeza, Alejandro ; Talelli, Marina ; Arcos, Daniel ; Moros, María ; de la Fuente, Jesús M ; Vallet-Regí, María</creator><creatorcontrib>Guisasola, Eduardo ; Baeza, Alejandro ; Talelli, Marina ; Arcos, Daniel ; Moros, María ; de la Fuente, Jesús M ; Vallet-Regí, María</creatorcontrib><description>Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.5b03470</identifier><identifier>PMID: 26536300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylamides - chemistry ; Acrylic Resins - chemistry ; Delayed-Action Preparations ; Drug Delivery Systems - instrumentation ; Fluorescein - chemistry ; Magnetic Phenomena ; Nanoparticles - chemistry ; Silicon Dioxide - chemistry</subject><ispartof>Langmuir, 2015-11, Vol.31 (46), p.12777-12782</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</citedby><cites>FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5b03470$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.5b03470$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26536300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guisasola, Eduardo</creatorcontrib><creatorcontrib>Baeza, Alejandro</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Arcos, Daniel</creatorcontrib><creatorcontrib>Moros, María</creatorcontrib><creatorcontrib>de la Fuente, Jesús M</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><title>Magnetic-Responsive Release Controlled by Hot Spot Effect</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.</description><subject>Acrylamides - chemistry</subject><subject>Acrylic Resins - chemistry</subject><subject>Delayed-Action Preparations</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Fluorescein - chemistry</subject><subject>Magnetic Phenomena</subject><subject>Nanoparticles - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLFOwzAQhi0EoqXwBghlZEm52I6djKgqFKkIqXS37ORcpUriYCdIvD2p2jKy3C3f_5_uI-Q-gXkCNHnSRZjXut01Q-XnqQHGJVyQaZJSiNOMyksyBclZLLlgE3ITwh4AcsbzazKhImWCAUxJ_q53LfZVEW8wdK4N1TdGG6xRB4wWru29q2ssI_MTrVwffXbjWFqLRX9LrqyuA96d9oxsX5bbxSpef7y-LZ7XsWY572MrgXJNKS8ZGMgwTTGzQupC0DIzyKzmMjelMVKWGS9EmSeZBGu0yTi1ms3I47G28-5rwNCrpgoF1uPr6IagEskET9I0FyPKj2jhXQgerep81Wj_oxJQB2dqdKbOztTJ2Rh7OF0YTIPlX-gsaQTgCBziezf4dvz3_85fGi17cQ</recordid><startdate>20151124</startdate><enddate>20151124</enddate><creator>Guisasola, Eduardo</creator><creator>Baeza, Alejandro</creator><creator>Talelli, Marina</creator><creator>Arcos, Daniel</creator><creator>Moros, María</creator><creator>de la Fuente, Jesús M</creator><creator>Vallet-Regí, María</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151124</creationdate><title>Magnetic-Responsive Release Controlled by Hot Spot Effect</title><author>Guisasola, Eduardo ; Baeza, Alejandro ; Talelli, Marina ; Arcos, Daniel ; Moros, María ; de la Fuente, Jesús M ; Vallet-Regí, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-f7024a224d30b08e55e8f67ac62d8be3fa479bdbb77d84c6d91870fbab842fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acrylamides - chemistry</topic><topic>Acrylic Resins - chemistry</topic><topic>Delayed-Action Preparations</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Fluorescein - chemistry</topic><topic>Magnetic Phenomena</topic><topic>Nanoparticles - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guisasola, Eduardo</creatorcontrib><creatorcontrib>Baeza, Alejandro</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Arcos, Daniel</creatorcontrib><creatorcontrib>Moros, María</creatorcontrib><creatorcontrib>de la Fuente, Jesús M</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guisasola, Eduardo</au><au>Baeza, Alejandro</au><au>Talelli, Marina</au><au>Arcos, Daniel</au><au>Moros, María</au><au>de la Fuente, Jesús M</au><au>Vallet-Regí, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic-Responsive Release Controlled by Hot Spot Effect</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2015-11-24</date><risdate>2015</risdate><volume>31</volume><issue>46</issue><spage>12777</spage><epage>12782</epage><pages>12777-12782</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician’s will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26536300</pmid><doi>10.1021/acs.langmuir.5b03470</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2015-11, Vol.31 (46), p.12777-12782 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1736415596 |
source | ACS Publications; MEDLINE |
subjects | Acrylamides - chemistry Acrylic Resins - chemistry Delayed-Action Preparations Drug Delivery Systems - instrumentation Fluorescein - chemistry Magnetic Phenomena Nanoparticles - chemistry Silicon Dioxide - chemistry |
title | Magnetic-Responsive Release Controlled by Hot Spot Effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic-Responsive%20Release%20Controlled%20by%20Hot%20Spot%20Effect&rft.jtitle=Langmuir&rft.au=Guisasola,%20Eduardo&rft.date=2015-11-24&rft.volume=31&rft.issue=46&rft.spage=12777&rft.epage=12782&rft.pages=12777-12782&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.5b03470&rft_dat=%3Cproquest_cross%3E1736415596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736415596&rft_id=info:pmid/26536300&rfr_iscdi=true |