A multiple-input single-output model for flow forecasting

A Multiple-input single-output time-invariant, non-linear model, based on a black-box systems approach, was used for flow forecasting during monsoon flood events using daily data. The model consists of a non-linear component representing the immediate and moderately delayed responses and a linear co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 1999-07, Vol.220 (1), p.12-26
Hauptverfasser: Kothyari, U.C., Singh, V.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 12
container_title Journal of hydrology (Amsterdam)
container_volume 220
creator Kothyari, U.C.
Singh, V.P.
description A Multiple-input single-output time-invariant, non-linear model, based on a black-box systems approach, was used for flow forecasting during monsoon flood events using daily data. The model consists of a non-linear component representing the immediate and moderately delayed responses and a linear component representing the delayed response of the catchment. It is based on a structure originally proposed by Muftuoglu, R.F. (New models for nonlinear catchment analysis. J. Hydrol. 73 (1984) 335–357; Monthly runoff generation by non-linear models. J. Hydrol. 125 (1991) 277–291). The spatial variation in rainfall amounts is incorporated in the model by treating the rainfall as separate lumped inputs. The model, in its non-parametric form, is first calibrated on various data sets stacked together and then verification tests are performed on different data sets. The results show that the model is capable of forecasting flows with high efficiencies for the data used, indicating that it provides a low cost alternative model for use in sparse-data scenarios and for small-one-off projects.
doi_str_mv 10.1016/S0022-1694(99)00055-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17361299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169499000554</els_id><sourcerecordid>17361299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-19e444892d1191d4526d2b81e2ca3f79fab1e5482c2751797ef3fbf6dffa11d03</originalsourceid><addsrcrecordid>eNqF0E1PwyAYwHFiNHFOP4JxB2P0UOWhUMrJLItvyRIPc2fCKCyYrkxoNX576bro0ROQ_B4gf4TOAd8ChuJugTEhGRSCXgtxgzFmLKMHaAQlFxnhmB-i0S85RicxvieE85yOkJhONl3dum1tMtdsu3YSXbNOB9-1_WnjK1NPrA8TW_uvfmO0im0yp-jIqjqas_06RsvHh7fZczZ_fXqZTeeZokDbDIShlJaCVAACKspIUZFVCYZolVsurFqBYbQkmnAGXHBjc7uyRWWtAqhwPkZXw73b4D86E1u5cVGbulaN8V2UwPMCiBAJsgHq4GMMxsptcBsVviVg2YeSu1CyryCFkLtQkqa5y_0DKmpV26Aa7eLfcFkQWrDELgZmlZdqHRJZLgiGHBORM85IEveDMCnHpzNBRu1Mo03lUrVWVt7985UfI6aFJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17361299</pqid></control><display><type>article</type><title>A multiple-input single-output model for flow forecasting</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kothyari, U.C. ; Singh, V.P.</creator><creatorcontrib>Kothyari, U.C. ; Singh, V.P.</creatorcontrib><description>A Multiple-input single-output time-invariant, non-linear model, based on a black-box systems approach, was used for flow forecasting during monsoon flood events using daily data. The model consists of a non-linear component representing the immediate and moderately delayed responses and a linear component representing the delayed response of the catchment. It is based on a structure originally proposed by Muftuoglu, R.F. (New models for nonlinear catchment analysis. J. Hydrol. 73 (1984) 335–357; Monthly runoff generation by non-linear models. J. Hydrol. 125 (1991) 277–291). The spatial variation in rainfall amounts is incorporated in the model by treating the rainfall as separate lumped inputs. The model, in its non-parametric form, is first calibrated on various data sets stacked together and then verification tests are performed on different data sets. The results show that the model is capable of forecasting flows with high efficiencies for the data used, indicating that it provides a low cost alternative model for use in sparse-data scenarios and for small-one-off projects.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/S0022-1694(99)00055-4</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catchment ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Forecasting ; Freshwater ; Heterogeneity ; Hydrology ; Hydrology. Hydrogeology ; mathematical models ; Natural hazards: prediction, damages, etc ; Rainfall ; Response Function ; Runoff ; stream flow ; watershed hydrology ; watersheds</subject><ispartof>Journal of hydrology (Amsterdam), 1999-07, Vol.220 (1), p.12-26</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-19e444892d1191d4526d2b81e2ca3f79fab1e5482c2751797ef3fbf6dffa11d03</citedby><cites>FETCH-LOGICAL-a414t-19e444892d1191d4526d2b81e2ca3f79fab1e5482c2751797ef3fbf6dffa11d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-1694(99)00055-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1862465$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothyari, U.C.</creatorcontrib><creatorcontrib>Singh, V.P.</creatorcontrib><title>A multiple-input single-output model for flow forecasting</title><title>Journal of hydrology (Amsterdam)</title><description>A Multiple-input single-output time-invariant, non-linear model, based on a black-box systems approach, was used for flow forecasting during monsoon flood events using daily data. The model consists of a non-linear component representing the immediate and moderately delayed responses and a linear component representing the delayed response of the catchment. It is based on a structure originally proposed by Muftuoglu, R.F. (New models for nonlinear catchment analysis. J. Hydrol. 73 (1984) 335–357; Monthly runoff generation by non-linear models. J. Hydrol. 125 (1991) 277–291). The spatial variation in rainfall amounts is incorporated in the model by treating the rainfall as separate lumped inputs. The model, in its non-parametric form, is first calibrated on various data sets stacked together and then verification tests are performed on different data sets. The results show that the model is capable of forecasting flows with high efficiencies for the data used, indicating that it provides a low cost alternative model for use in sparse-data scenarios and for small-one-off projects.</description><subject>Catchment</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Freshwater</subject><subject>Heterogeneity</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Rainfall</subject><subject>Response Function</subject><subject>Runoff</subject><subject>stream flow</subject><subject>watershed hydrology</subject><subject>watersheds</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0E1PwyAYwHFiNHFOP4JxB2P0UOWhUMrJLItvyRIPc2fCKCyYrkxoNX576bro0ROQ_B4gf4TOAd8ChuJugTEhGRSCXgtxgzFmLKMHaAQlFxnhmB-i0S85RicxvieE85yOkJhONl3dum1tMtdsu3YSXbNOB9-1_WnjK1NPrA8TW_uvfmO0im0yp-jIqjqas_06RsvHh7fZczZ_fXqZTeeZokDbDIShlJaCVAACKspIUZFVCYZolVsurFqBYbQkmnAGXHBjc7uyRWWtAqhwPkZXw73b4D86E1u5cVGbulaN8V2UwPMCiBAJsgHq4GMMxsptcBsVviVg2YeSu1CyryCFkLtQkqa5y_0DKmpV26Aa7eLfcFkQWrDELgZmlZdqHRJZLgiGHBORM85IEveDMCnHpzNBRu1Mo03lUrVWVt7985UfI6aFJA</recordid><startdate>19990726</startdate><enddate>19990726</enddate><creator>Kothyari, U.C.</creator><creator>Singh, V.P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19990726</creationdate><title>A multiple-input single-output model for flow forecasting</title><author>Kothyari, U.C. ; Singh, V.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-19e444892d1191d4526d2b81e2ca3f79fab1e5482c2751797ef3fbf6dffa11d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Catchment</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Freshwater</topic><topic>Heterogeneity</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Rainfall</topic><topic>Response Function</topic><topic>Runoff</topic><topic>stream flow</topic><topic>watershed hydrology</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothyari, U.C.</creatorcontrib><creatorcontrib>Singh, V.P.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothyari, U.C.</au><au>Singh, V.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiple-input single-output model for flow forecasting</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>1999-07-26</date><risdate>1999</risdate><volume>220</volume><issue>1</issue><spage>12</spage><epage>26</epage><pages>12-26</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>A Multiple-input single-output time-invariant, non-linear model, based on a black-box systems approach, was used for flow forecasting during monsoon flood events using daily data. The model consists of a non-linear component representing the immediate and moderately delayed responses and a linear component representing the delayed response of the catchment. It is based on a structure originally proposed by Muftuoglu, R.F. (New models for nonlinear catchment analysis. J. Hydrol. 73 (1984) 335–357; Monthly runoff generation by non-linear models. J. Hydrol. 125 (1991) 277–291). The spatial variation in rainfall amounts is incorporated in the model by treating the rainfall as separate lumped inputs. The model, in its non-parametric form, is first calibrated on various data sets stacked together and then verification tests are performed on different data sets. The results show that the model is capable of forecasting flows with high efficiencies for the data used, indicating that it provides a low cost alternative model for use in sparse-data scenarios and for small-one-off projects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0022-1694(99)00055-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 1999-07, Vol.220 (1), p.12-26
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_17361299
source ScienceDirect Journals (5 years ago - present)
subjects Catchment
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Forecasting
Freshwater
Heterogeneity
Hydrology
Hydrology. Hydrogeology
mathematical models
Natural hazards: prediction, damages, etc
Rainfall
Response Function
Runoff
stream flow
watershed hydrology
watersheds
title A multiple-input single-output model for flow forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiple-input%20single-output%20model%20for%20flow%20forecasting&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Kothyari,%20U.C.&rft.date=1999-07-26&rft.volume=220&rft.issue=1&rft.spage=12&rft.epage=26&rft.pages=12-26&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/S0022-1694(99)00055-4&rft_dat=%3Cproquest_cross%3E17361299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17361299&rft_id=info:pmid/&rft_els_id=S0022169499000554&rfr_iscdi=true