Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination

For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-10, Vol.49 (20), p.12271-12279
Hauptverfasser: Jia, Shuyu, Shi, Peng, Hu, Qing, Li, Bing, Zhang, Tong, Zhang, Xu-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12279
container_issue 20
container_start_page 12271
container_title Environmental science & technology
container_volume 49
creator Jia, Shuyu
Shi, Peng
Hu, Qing
Li, Bing
Zhang, Tong
Zhang, Xu-Xiang
description For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.
doi_str_mv 10.1021/acs.est.5b03521
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735920808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735920808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a497t-4c699e9ce30ab148031da7c912619103a2dc480fbfda4894c1e952dddbead64d3</originalsourceid><addsrcrecordid>eNqNkd1L5DAUxYMoO6O7z74tBV8E6Xhv0rTNo466uzCg7AfrW0mTdI3bNmPSLvjfmzKjgrDg0w2H3zmXm0PIIcICgeKpVGFhwrDgNTBOcYfMkVNIeclxl8wBkKWC5bczsh_CPQBQBuUHMqM5EwViOSfqXKrBeCvbZOm6buzt8Jj8uLPNkFx4-8-E5KwfbG3dYFXy3QQbBtkrk9x410XN9Ykeve3_THT_d3r8ljEvWd61LipyQj6SvUa2wXzazgPy6-ry5_Jrurr-8m15tkplJoohzVQuhBHKMJA1ZiUw1LJQAmmOAoFJqlVUm7rRMitFptAITrXWtZE6zzQ7IMeb3LV3D2P8lqqzQZm2lb1xY6iwYFxQKKF8B0o50DwrsogevUHv3ej7eMhElQACCh6p0w2lvAvBm6Zae9tJ_1ghVFNVVayqmtzbqqLj8zZ3rDujX_jnbiJwsgEm5-vO_8Q9ASqkn2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728009075</pqid></control><display><type>article</type><title>Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jia, Shuyu ; Shi, Peng ; Hu, Qing ; Li, Bing ; Zhang, Tong ; Zhang, Xu-Xiang</creator><creatorcontrib>Jia, Shuyu ; Shi, Peng ; Hu, Qing ; Li, Bing ; Zhang, Tong ; Zhang, Xu-Xiang</creatorcontrib><description>For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p &lt; 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b03521</identifier><identifier>PMID: 26397118</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acidovorax ; Antibiotics ; Bacteria ; Bacteria - genetics ; Bacteria - growth &amp; development ; Cell division ; Chlorine ; DNA Transposable Elements - genetics ; Drinking water ; Drinking Water - microbiology ; Drug resistance ; Drug Resistance, Bacterial - genetics ; Genes ; Halogenation ; Limnobacter ; Methylophilus ; Pseudomonas ; Sphingomonas ; Waste Disposal, Fluid ; Water Pollutants, Chemical - analysis ; Water Purification</subject><ispartof>Environmental science &amp; technology, 2015-10, Vol.49 (20), p.12271-12279</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 20, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a497t-4c699e9ce30ab148031da7c912619103a2dc480fbfda4894c1e952dddbead64d3</citedby><cites>FETCH-LOGICAL-a497t-4c699e9ce30ab148031da7c912619103a2dc480fbfda4894c1e952dddbead64d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b03521$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b03521$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26397118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Shuyu</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Hu, Qing</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Zhang, Xu-Xiang</creatorcontrib><title>Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p &lt; 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.</description><subject>Acidovorax</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth &amp; development</subject><subject>Cell division</subject><subject>Chlorine</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drinking water</subject><subject>Drinking Water - microbiology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Genes</subject><subject>Halogenation</subject><subject>Limnobacter</subject><subject>Methylophilus</subject><subject>Pseudomonas</subject><subject>Sphingomonas</subject><subject>Waste Disposal, Fluid</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Purification</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd1L5DAUxYMoO6O7z74tBV8E6Xhv0rTNo466uzCg7AfrW0mTdI3bNmPSLvjfmzKjgrDg0w2H3zmXm0PIIcICgeKpVGFhwrDgNTBOcYfMkVNIeclxl8wBkKWC5bczsh_CPQBQBuUHMqM5EwViOSfqXKrBeCvbZOm6buzt8Jj8uLPNkFx4-8-E5KwfbG3dYFXy3QQbBtkrk9x410XN9Ykeve3_THT_d3r8ljEvWd61LipyQj6SvUa2wXzazgPy6-ry5_Jrurr-8m15tkplJoohzVQuhBHKMJA1ZiUw1LJQAmmOAoFJqlVUm7rRMitFptAITrXWtZE6zzQ7IMeb3LV3D2P8lqqzQZm2lb1xY6iwYFxQKKF8B0o50DwrsogevUHv3ej7eMhElQACCh6p0w2lvAvBm6Zae9tJ_1ghVFNVVayqmtzbqqLj8zZ3rDujX_jnbiJwsgEm5-vO_8Q9ASqkn2k</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Jia, Shuyu</creator><creator>Shi, Peng</creator><creator>Hu, Qing</creator><creator>Li, Bing</creator><creator>Zhang, Tong</creator><creator>Zhang, Xu-Xiang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7QL</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20151020</creationdate><title>Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination</title><author>Jia, Shuyu ; Shi, Peng ; Hu, Qing ; Li, Bing ; Zhang, Tong ; Zhang, Xu-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a497t-4c699e9ce30ab148031da7c912619103a2dc480fbfda4894c1e952dddbead64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidovorax</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth &amp; development</topic><topic>Cell division</topic><topic>Chlorine</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drinking water</topic><topic>Drinking Water - microbiology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Genes</topic><topic>Halogenation</topic><topic>Limnobacter</topic><topic>Methylophilus</topic><topic>Pseudomonas</topic><topic>Sphingomonas</topic><topic>Waste Disposal, Fluid</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Shuyu</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Hu, Qing</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Zhang, Xu-Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Shuyu</au><au>Shi, Peng</au><au>Hu, Qing</au><au>Li, Bing</au><au>Zhang, Tong</au><au>Zhang, Xu-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>49</volume><issue>20</issue><spage>12271</spage><epage>12279</epage><pages>12271-12279</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p &lt; 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26397118</pmid><doi>10.1021/acs.est.5b03521</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-10, Vol.49 (20), p.12271-12279
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1735920808
source MEDLINE; ACS Publications
subjects Acidovorax
Antibiotics
Bacteria
Bacteria - genetics
Bacteria - growth & development
Cell division
Chlorine
DNA Transposable Elements - genetics
Drinking water
Drinking Water - microbiology
Drug resistance
Drug Resistance, Bacterial - genetics
Genes
Halogenation
Limnobacter
Methylophilus
Pseudomonas
Sphingomonas
Waste Disposal, Fluid
Water Pollutants, Chemical - analysis
Water Purification
title Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Community%20Shift%20Drives%20Antibiotic%20Resistance%20Promotion%20during%20Drinking%20Water%20Chlorination&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Jia,%20Shuyu&rft.date=2015-10-20&rft.volume=49&rft.issue=20&rft.spage=12271&rft.epage=12279&rft.pages=12271-12279&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b03521&rft_dat=%3Cproquest_cross%3E1735920808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728009075&rft_id=info:pmid/26397118&rfr_iscdi=true