Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration
Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape...
Gespeichert in:
Veröffentlicht in: | Conservation genetics 2015-12, Vol.16 (6), p.1303-1317 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1317 |
---|---|
container_issue | 6 |
container_start_page | 1303 |
container_title | Conservation genetics |
container_volume | 16 |
creator | Shryock, Daniel F Havrilla, Caroline A DeFalco, Lesley A Esque, Todd C Custer, Nathan A Wood, Troy E |
description | Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration. |
doi_str_mv | 10.1007/s10592-015-0741-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735920336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735920336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6bf77d90ec594ae1cca8b05259d1fc9554763edf7a52173c2d7dda3a991da75f3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEEqXwAJywxIUDAY8dxw03VGhBWsSh9GzNOpOsV04cbKeiz8BL41U4IA6I0_jwfb_H_qvqOfA3wLl-m4CrTtQcVM11AzU8qM5AaVF3WuqHp3Pb1rwV8Lh6ktKRc2iFhrPq5w7nPllciI00h8nZxMLAbpYDUkRvCRlOezeuyNzM8oHYl3DEO2IfKFHM7xiyafXZ3WF0mOk1Swtmh97f1_Rj8c66zHBZYkB7YDmwcXU9MbLBh9FZ9CxSyiEWJ8xPq0cD-kTPfs_z6vbq47fLT_Xu6_Xny_e72ja6zXW7H7TuO05WdQ0SWIsXe66E6noYbKdUoST1g0YlQEsret33KLHroEetBnlevdpyy1rf13K_mVyy5D3OFNZkQCvZiIZ34j9QWb6dS9kW9OVf6DGscS4PKZS4ACG1agoFG2VjSCnSYJboJoz3Brg5NWm2Jk1p0pyaNFAcsTmpsPNI8Y_kf0gvNmnAYHCMLpnbG1EAzoVopFDyF2i2q6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728123754</pqid></control><display><type>article</type><title>Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration</title><source>Springer Nature - Complete Springer Journals</source><creator>Shryock, Daniel F ; Havrilla, Caroline A ; DeFalco, Lesley A ; Esque, Todd C ; Custer, Nathan A ; Wood, Troy E</creator><creatorcontrib>Shryock, Daniel F ; Havrilla, Caroline A ; DeFalco, Lesley A ; Esque, Todd C ; Custer, Nathan A ; Wood, Troy E</creatorcontrib><description>Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.</description><identifier>ISSN: 1566-0621</identifier><identifier>EISSN: 1572-9737</identifier><identifier>DOI: 10.1007/s10592-015-0741-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>amplified fragment length polymorphism ; Animal Genetics and Genomics ; Biodiversity ; Biomedical and Life Sciences ; Climate change ; Climate change models ; Conservation Biology/Ecology ; Deserts ; ecological restoration ; Ecology ; Environmental changes ; Environmental conditions ; environmental factors ; Environmental gradient ; Environmental restoration ; Evolutionary Biology ; genetic variation ; genome ; Genomics ; intraspecific variation ; Landscape ; landscapes ; Life Sciences ; loci ; Mojave Desert ; phenology ; Plant Genetics and Genomics ; Plant species ; population ; Research Article ; Seasonal variations ; spatial variation ; species ; Sphaeralcea ; Sphaeralcea ambigua ; summer ; temperature ; Temperature gradients ; temperature profiles ; topography ; uncertainty ; Water stress</subject><ispartof>Conservation genetics, 2015-12, Vol.16 (6), p.1303-1317</ispartof><rights>Springer Science+Business Media Dordrecht (outside the USA) 2015</rights><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6bf77d90ec594ae1cca8b05259d1fc9554763edf7a52173c2d7dda3a991da75f3</citedby><cites>FETCH-LOGICAL-c476t-6bf77d90ec594ae1cca8b05259d1fc9554763edf7a52173c2d7dda3a991da75f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10592-015-0741-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10592-015-0741-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shryock, Daniel F</creatorcontrib><creatorcontrib>Havrilla, Caroline A</creatorcontrib><creatorcontrib>DeFalco, Lesley A</creatorcontrib><creatorcontrib>Esque, Todd C</creatorcontrib><creatorcontrib>Custer, Nathan A</creatorcontrib><creatorcontrib>Wood, Troy E</creatorcontrib><title>Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration</title><title>Conservation genetics</title><addtitle>Conserv Genet</addtitle><description>Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.</description><subject>amplified fragment length polymorphism</subject><subject>Animal Genetics and Genomics</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Climate change models</subject><subject>Conservation Biology/Ecology</subject><subject>Deserts</subject><subject>ecological restoration</subject><subject>Ecology</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>environmental factors</subject><subject>Environmental gradient</subject><subject>Environmental restoration</subject><subject>Evolutionary Biology</subject><subject>genetic variation</subject><subject>genome</subject><subject>Genomics</subject><subject>intraspecific variation</subject><subject>Landscape</subject><subject>landscapes</subject><subject>Life Sciences</subject><subject>loci</subject><subject>Mojave Desert</subject><subject>phenology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant species</subject><subject>population</subject><subject>Research Article</subject><subject>Seasonal variations</subject><subject>spatial variation</subject><subject>species</subject><subject>Sphaeralcea</subject><subject>Sphaeralcea ambigua</subject><subject>summer</subject><subject>temperature</subject><subject>Temperature gradients</subject><subject>temperature profiles</subject><subject>topography</subject><subject>uncertainty</subject><subject>Water stress</subject><issn>1566-0621</issn><issn>1572-9737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkcFu1DAQhiMEEqXwAJywxIUDAY8dxw03VGhBWsSh9GzNOpOsV04cbKeiz8BL41U4IA6I0_jwfb_H_qvqOfA3wLl-m4CrTtQcVM11AzU8qM5AaVF3WuqHp3Pb1rwV8Lh6ktKRc2iFhrPq5w7nPllciI00h8nZxMLAbpYDUkRvCRlOezeuyNzM8oHYl3DEO2IfKFHM7xiyafXZ3WF0mOk1Swtmh97f1_Rj8c66zHBZYkB7YDmwcXU9MbLBh9FZ9CxSyiEWJ8xPq0cD-kTPfs_z6vbq47fLT_Xu6_Xny_e72ja6zXW7H7TuO05WdQ0SWIsXe66E6noYbKdUoST1g0YlQEsret33KLHroEetBnlevdpyy1rf13K_mVyy5D3OFNZkQCvZiIZ34j9QWb6dS9kW9OVf6DGscS4PKZS4ACG1agoFG2VjSCnSYJboJoz3Brg5NWm2Jk1p0pyaNFAcsTmpsPNI8Y_kf0gvNmnAYHCMLpnbG1EAzoVopFDyF2i2q6E</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Shryock, Daniel F</creator><creator>Havrilla, Caroline A</creator><creator>DeFalco, Lesley A</creator><creator>Esque, Todd C</creator><creator>Custer, Nathan A</creator><creator>Wood, Troy E</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20151201</creationdate><title>Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration</title><author>Shryock, Daniel F ; Havrilla, Caroline A ; DeFalco, Lesley A ; Esque, Todd C ; Custer, Nathan A ; Wood, Troy E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6bf77d90ec594ae1cca8b05259d1fc9554763edf7a52173c2d7dda3a991da75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>amplified fragment length polymorphism</topic><topic>Animal Genetics and Genomics</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Climate change models</topic><topic>Conservation Biology/Ecology</topic><topic>Deserts</topic><topic>ecological restoration</topic><topic>Ecology</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>environmental factors</topic><topic>Environmental gradient</topic><topic>Environmental restoration</topic><topic>Evolutionary Biology</topic><topic>genetic variation</topic><topic>genome</topic><topic>Genomics</topic><topic>intraspecific variation</topic><topic>Landscape</topic><topic>landscapes</topic><topic>Life Sciences</topic><topic>loci</topic><topic>Mojave Desert</topic><topic>phenology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant species</topic><topic>population</topic><topic>Research Article</topic><topic>Seasonal variations</topic><topic>spatial variation</topic><topic>species</topic><topic>Sphaeralcea</topic><topic>Sphaeralcea ambigua</topic><topic>summer</topic><topic>temperature</topic><topic>Temperature gradients</topic><topic>temperature profiles</topic><topic>topography</topic><topic>uncertainty</topic><topic>Water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shryock, Daniel F</creatorcontrib><creatorcontrib>Havrilla, Caroline A</creatorcontrib><creatorcontrib>DeFalco, Lesley A</creatorcontrib><creatorcontrib>Esque, Todd C</creatorcontrib><creatorcontrib>Custer, Nathan A</creatorcontrib><creatorcontrib>Wood, Troy E</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Conservation genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shryock, Daniel F</au><au>Havrilla, Caroline A</au><au>DeFalco, Lesley A</au><au>Esque, Todd C</au><au>Custer, Nathan A</au><au>Wood, Troy E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration</atitle><jtitle>Conservation genetics</jtitle><stitle>Conserv Genet</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>16</volume><issue>6</issue><spage>1303</spage><epage>1317</epage><pages>1303-1317</pages><issn>1566-0621</issn><eissn>1572-9737</eissn><abstract>Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10592-015-0741-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-0621 |
ispartof | Conservation genetics, 2015-12, Vol.16 (6), p.1303-1317 |
issn | 1566-0621 1572-9737 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735920336 |
source | Springer Nature - Complete Springer Journals |
subjects | amplified fragment length polymorphism Animal Genetics and Genomics Biodiversity Biomedical and Life Sciences Climate change Climate change models Conservation Biology/Ecology Deserts ecological restoration Ecology Environmental changes Environmental conditions environmental factors Environmental gradient Environmental restoration Evolutionary Biology genetic variation genome Genomics intraspecific variation Landscape landscapes Life Sciences loci Mojave Desert phenology Plant Genetics and Genomics Plant species population Research Article Seasonal variations spatial variation species Sphaeralcea Sphaeralcea ambigua summer temperature Temperature gradients temperature profiles topography uncertainty Water stress |
title | Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landscape%20genomics%20of%20Sphaeralcea%20ambigua%20in%20the%20Mojave%20Desert:%20a%20multivariate,%20spatially-explicit%20approach%20to%20guide%20ecological%20restoration&rft.jtitle=Conservation%20genetics&rft.au=Shryock,%20Daniel%20F&rft.date=2015-12-01&rft.volume=16&rft.issue=6&rft.spage=1303&rft.epage=1317&rft.pages=1303-1317&rft.issn=1566-0621&rft.eissn=1572-9737&rft_id=info:doi/10.1007/s10592-015-0741-1&rft_dat=%3Cproquest_cross%3E1735920336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728123754&rft_id=info:pmid/&rfr_iscdi=true |