A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta

In the Mackenzie Delta, western Arctic Canada, decisions relating to navigation, socio-economics, infrastructure stability, wildlife, vegetation and emergency preparedness are closely related to the delta hydrology. Presented here is a remote sensing decision-tree approach to delineate open-water hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2015-07, Vol.164, p.90-102
Hauptverfasser: Crasto, N., Hopkinson, C., Forbes, D.L., Lesack, L., Marsh, P., Spooner, I., van der Sanden, J.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 90
container_title Remote sensing of environment
container_volume 164
creator Crasto, N.
Hopkinson, C.
Forbes, D.L.
Lesack, L.
Marsh, P.
Spooner, I.
van der Sanden, J.J.
description In the Mackenzie Delta, western Arctic Canada, decisions relating to navigation, socio-economics, infrastructure stability, wildlife, vegetation and emergency preparedness are closely related to the delta hydrology. Presented here is a remote sensing decision-tree approach to delineate open-water hydrological features using high-resolution LiDAR terrain, intensity and derivative data. The proposed classification scheme exploits the propensity of LiDAR point attributes and data metrics such as point density and standard deviation (of intensity and elevation) to cluster around characteristic response values over water and non-water surfaces. Due to the impracticability of validating an Arctic water surface classification over such a huge and remote area, results of the hierarchical classification were compared to alternative classifications derived from Radarsat-2 and a manually intensive digitisation technique. Open-water features were identified with >95% accuracy when compared to manually interpreted data. The spatially extensive but temporally distinct information on the hydrological setting of the delta thus extracted forms the basis for calculation of time-invariant parameters such as off-channel storage capacity and hydraulic gradients. In situations where LiDAR data are primarily collected in support of terrain-based watershed hydrologic or floodplain hydraulic assessments, contemporaneous water extent and associated level data are valuable in further characterizing terrain hydrological characteristics.
doi_str_mv 10.1016/j.rse.2015.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735913916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735913916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-50600fc56f59e22602b69c7b8097d8144c896af7f444b157a8b94969f7c1cb83</originalsourceid><addsrcrecordid>eNotkD1rwzAURTW00DTtD-imsYvd92xZskaTfoKhULILWZFAwbFTPYXSf1-HdLpw7-EOh7EHhBIB5dO-TOTLCrApQZSAeMVWALUoRNWoG3ZLtIdlbBWu2LbjfXzuvorBkt_xnXeR4jwVOXnP3WiJYojO5qXjc-Dz0U_8x2afOJ1SsM4TjxO3E--Sy9EtB2O2d-w62JH8_X-u2fb1Zbt5L_rPt49N1xeuUm0uGpAAwTUyNNpXlYRqkNqpoQWtdi0K4VotbVBBCDFgo2w7aKGlDsqhG9p6zR4vt8c0f588ZXOI5Pw42snPJzKo6kZjrVEuKF5Ql2ai5IM5pniw6dcgmLM0szeLNHOWZkCYRVr9B2ybYZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735913916</pqid></control><display><type>article</type><title>A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Crasto, N. ; Hopkinson, C. ; Forbes, D.L. ; Lesack, L. ; Marsh, P. ; Spooner, I. ; van der Sanden, J.J.</creator><creatorcontrib>Crasto, N. ; Hopkinson, C. ; Forbes, D.L. ; Lesack, L. ; Marsh, P. ; Spooner, I. ; van der Sanden, J.J.</creatorcontrib><description>In the Mackenzie Delta, western Arctic Canada, decisions relating to navigation, socio-economics, infrastructure stability, wildlife, vegetation and emergency preparedness are closely related to the delta hydrology. Presented here is a remote sensing decision-tree approach to delineate open-water hydrological features using high-resolution LiDAR terrain, intensity and derivative data. The proposed classification scheme exploits the propensity of LiDAR point attributes and data metrics such as point density and standard deviation (of intensity and elevation) to cluster around characteristic response values over water and non-water surfaces. Due to the impracticability of validating an Arctic water surface classification over such a huge and remote area, results of the hierarchical classification were compared to alternative classifications derived from Radarsat-2 and a manually intensive digitisation technique. Open-water features were identified with &gt;95% accuracy when compared to manually interpreted data. The spatially extensive but temporally distinct information on the hydrological setting of the delta thus extracted forms the basis for calculation of time-invariant parameters such as off-channel storage capacity and hydraulic gradients. In situations where LiDAR data are primarily collected in support of terrain-based watershed hydrologic or floodplain hydraulic assessments, contemporaneous water extent and associated level data are valuable in further characterizing terrain hydrological characteristics.</description><identifier>ISSN: 0034-4257</identifier><identifier>DOI: 10.1016/j.rse.2015.04.011</identifier><language>eng</language><subject>Brackish</subject><ispartof>Remote sensing of environment, 2015-07, Vol.164, p.90-102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-50600fc56f59e22602b69c7b8097d8144c896af7f444b157a8b94969f7c1cb83</citedby><cites>FETCH-LOGICAL-c278t-50600fc56f59e22602b69c7b8097d8144c896af7f444b157a8b94969f7c1cb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Crasto, N.</creatorcontrib><creatorcontrib>Hopkinson, C.</creatorcontrib><creatorcontrib>Forbes, D.L.</creatorcontrib><creatorcontrib>Lesack, L.</creatorcontrib><creatorcontrib>Marsh, P.</creatorcontrib><creatorcontrib>Spooner, I.</creatorcontrib><creatorcontrib>van der Sanden, J.J.</creatorcontrib><title>A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta</title><title>Remote sensing of environment</title><description>In the Mackenzie Delta, western Arctic Canada, decisions relating to navigation, socio-economics, infrastructure stability, wildlife, vegetation and emergency preparedness are closely related to the delta hydrology. Presented here is a remote sensing decision-tree approach to delineate open-water hydrological features using high-resolution LiDAR terrain, intensity and derivative data. The proposed classification scheme exploits the propensity of LiDAR point attributes and data metrics such as point density and standard deviation (of intensity and elevation) to cluster around characteristic response values over water and non-water surfaces. Due to the impracticability of validating an Arctic water surface classification over such a huge and remote area, results of the hierarchical classification were compared to alternative classifications derived from Radarsat-2 and a manually intensive digitisation technique. Open-water features were identified with &gt;95% accuracy when compared to manually interpreted data. The spatially extensive but temporally distinct information on the hydrological setting of the delta thus extracted forms the basis for calculation of time-invariant parameters such as off-channel storage capacity and hydraulic gradients. In situations where LiDAR data are primarily collected in support of terrain-based watershed hydrologic or floodplain hydraulic assessments, contemporaneous water extent and associated level data are valuable in further characterizing terrain hydrological characteristics.</description><subject>Brackish</subject><issn>0034-4257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkD1rwzAURTW00DTtD-imsYvd92xZskaTfoKhULILWZFAwbFTPYXSf1-HdLpw7-EOh7EHhBIB5dO-TOTLCrApQZSAeMVWALUoRNWoG3ZLtIdlbBWu2LbjfXzuvorBkt_xnXeR4jwVOXnP3WiJYojO5qXjc-Dz0U_8x2afOJ1SsM4TjxO3E--Sy9EtB2O2d-w62JH8_X-u2fb1Zbt5L_rPt49N1xeuUm0uGpAAwTUyNNpXlYRqkNqpoQWtdi0K4VotbVBBCDFgo2w7aKGlDsqhG9p6zR4vt8c0f588ZXOI5Pw42snPJzKo6kZjrVEuKF5Ql2ai5IM5pniw6dcgmLM0szeLNHOWZkCYRVr9B2ybYZU</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Crasto, N.</creator><creator>Hopkinson, C.</creator><creator>Forbes, D.L.</creator><creator>Lesack, L.</creator><creator>Marsh, P.</creator><creator>Spooner, I.</creator><creator>van der Sanden, J.J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201507</creationdate><title>A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta</title><author>Crasto, N. ; Hopkinson, C. ; Forbes, D.L. ; Lesack, L. ; Marsh, P. ; Spooner, I. ; van der Sanden, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-50600fc56f59e22602b69c7b8097d8144c896af7f444b157a8b94969f7c1cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brackish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crasto, N.</creatorcontrib><creatorcontrib>Hopkinson, C.</creatorcontrib><creatorcontrib>Forbes, D.L.</creatorcontrib><creatorcontrib>Lesack, L.</creatorcontrib><creatorcontrib>Marsh, P.</creatorcontrib><creatorcontrib>Spooner, I.</creatorcontrib><creatorcontrib>van der Sanden, J.J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crasto, N.</au><au>Hopkinson, C.</au><au>Forbes, D.L.</au><au>Lesack, L.</au><au>Marsh, P.</au><au>Spooner, I.</au><au>van der Sanden, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta</atitle><jtitle>Remote sensing of environment</jtitle><date>2015-07</date><risdate>2015</risdate><volume>164</volume><spage>90</spage><epage>102</epage><pages>90-102</pages><issn>0034-4257</issn><abstract>In the Mackenzie Delta, western Arctic Canada, decisions relating to navigation, socio-economics, infrastructure stability, wildlife, vegetation and emergency preparedness are closely related to the delta hydrology. Presented here is a remote sensing decision-tree approach to delineate open-water hydrological features using high-resolution LiDAR terrain, intensity and derivative data. The proposed classification scheme exploits the propensity of LiDAR point attributes and data metrics such as point density and standard deviation (of intensity and elevation) to cluster around characteristic response values over water and non-water surfaces. Due to the impracticability of validating an Arctic water surface classification over such a huge and remote area, results of the hierarchical classification were compared to alternative classifications derived from Radarsat-2 and a manually intensive digitisation technique. Open-water features were identified with &gt;95% accuracy when compared to manually interpreted data. The spatially extensive but temporally distinct information on the hydrological setting of the delta thus extracted forms the basis for calculation of time-invariant parameters such as off-channel storage capacity and hydraulic gradients. In situations where LiDAR data are primarily collected in support of terrain-based watershed hydrologic or floodplain hydraulic assessments, contemporaneous water extent and associated level data are valuable in further characterizing terrain hydrological characteristics.</abstract><doi>10.1016/j.rse.2015.04.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2015-07, Vol.164, p.90-102
issn 0034-4257
language eng
recordid cdi_proquest_miscellaneous_1735913916
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Brackish
title A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20LiDAR-based%20decision-tree%20classification%20of%20open%20water%20surfaces%20in%20an%20Arctic%20delta&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Crasto,%20N.&rft.date=2015-07&rft.volume=164&rft.spage=90&rft.epage=102&rft.pages=90-102&rft.issn=0034-4257&rft_id=info:doi/10.1016/j.rse.2015.04.011&rft_dat=%3Cproquest_cross%3E1735913916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735913916&rft_id=info:pmid/&rfr_iscdi=true