Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations

We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2013-09, Vol.9 (9), p.4018-4025
Hauptverfasser: Lange, Adrian W, Voth, Gregory A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4025
container_issue 9
container_start_page 4018
container_title Journal of chemical theory and computation
container_volume 9
creator Lange, Adrian W
Voth, Gregory A
description We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.
doi_str_mv 10.1021/ct400516x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735908118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735908118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRbK0u_AMyG0EX0bkzSTpZ1mBVUETRnRBuJhObkkedh9h_b0pqV67OXXx8nHsIOQV2BYzDtXIhYxHEP3tkDFGYBEnM4_3dDXJEjqxdMiZEyMUhGfE4SrhIpmPy8eRrVwXWodN0tlqZDtWCuo6mC91UCmv6qlG56rtya1q1dG7ws9GtozdodUFfPLbONwNtnVnTFGvla3RV19pjclBibfXJNifkfX77lt4Hj893D-nsMUAhwQV5KbSMOWLeZxKhLCHMuWYlDwsoRBEppqaJ4DCVHCTmXOgcoUClo1JyIcWEXAzevv6X19ZlfRml6xpb3XmbwVRECZMAG_RyQJXprDW6zFamatCsM2DZZsxsN2bPnm21Pm90sSP_1uuB8wFAZbNl503bf_mP6Bf7KXwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735908118</pqid></control><display><type>article</type><title>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</title><source>ACS Publications</source><creator>Lange, Adrian W ; Voth, Gregory A</creator><creatorcontrib>Lange, Adrian W ; Voth, Gregory A</creatorcontrib><description>We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct400516x</identifier><identifier>PMID: 26592397</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2013-09, Vol.9 (9), p.4018-4025</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</citedby><cites>FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct400516x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct400516x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26592397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lange, Adrian W</creatorcontrib><creatorcontrib>Voth, Gregory A</creatorcontrib><title>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkEtLw0AUhQdRbK0u_AMyG0EX0bkzSTpZ1mBVUETRnRBuJhObkkedh9h_b0pqV67OXXx8nHsIOQV2BYzDtXIhYxHEP3tkDFGYBEnM4_3dDXJEjqxdMiZEyMUhGfE4SrhIpmPy8eRrVwXWodN0tlqZDtWCuo6mC91UCmv6qlG56rtya1q1dG7ws9GtozdodUFfPLbONwNtnVnTFGvla3RV19pjclBibfXJNifkfX77lt4Hj893D-nsMUAhwQV5KbSMOWLeZxKhLCHMuWYlDwsoRBEppqaJ4DCVHCTmXOgcoUClo1JyIcWEXAzevv6X19ZlfRml6xpb3XmbwVRECZMAG_RyQJXprDW6zFamatCsM2DZZsxsN2bPnm21Pm90sSP_1uuB8wFAZbNl503bf_mP6Bf7KXwc</recordid><startdate>20130910</startdate><enddate>20130910</enddate><creator>Lange, Adrian W</creator><creator>Voth, Gregory A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130910</creationdate><title>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</title><author>Lange, Adrian W ; Voth, Gregory A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Adrian W</creatorcontrib><creatorcontrib>Voth, Gregory A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lange, Adrian W</au><au>Voth, Gregory A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2013-09-10</date><risdate>2013</risdate><volume>9</volume><issue>9</issue><spage>4018</spage><epage>4025</epage><pages>4018-4025</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26592397</pmid><doi>10.1021/ct400516x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2013-09, Vol.9 (9), p.4018-4025
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1735908118
source ACS Publications
title Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-state%20Approach%20to%20Chemical%20Reactivity%20in%20Fragment%20Based%20Quantum%20Chemistry%20Calculations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Lange,%20Adrian%20W&rft.date=2013-09-10&rft.volume=9&rft.issue=9&rft.spage=4018&rft.epage=4025&rft.pages=4018-4025&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct400516x&rft_dat=%3Cproquest_cross%3E1735908118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735908118&rft_id=info:pmid/26592397&rfr_iscdi=true