Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations
We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2013-09, Vol.9 (9), p.4018-4025 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4025 |
---|---|
container_issue | 9 |
container_start_page | 4018 |
container_title | Journal of chemical theory and computation |
container_volume | 9 |
creator | Lange, Adrian W Voth, Gregory A |
description | We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions. |
doi_str_mv | 10.1021/ct400516x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735908118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735908118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRbK0u_AMyG0EX0bkzSTpZ1mBVUETRnRBuJhObkkedh9h_b0pqV67OXXx8nHsIOQV2BYzDtXIhYxHEP3tkDFGYBEnM4_3dDXJEjqxdMiZEyMUhGfE4SrhIpmPy8eRrVwXWodN0tlqZDtWCuo6mC91UCmv6qlG56rtya1q1dG7ws9GtozdodUFfPLbONwNtnVnTFGvla3RV19pjclBibfXJNifkfX77lt4Hj893D-nsMUAhwQV5KbSMOWLeZxKhLCHMuWYlDwsoRBEppqaJ4DCVHCTmXOgcoUClo1JyIcWEXAzevv6X19ZlfRml6xpb3XmbwVRECZMAG_RyQJXprDW6zFamatCsM2DZZsxsN2bPnm21Pm90sSP_1uuB8wFAZbNl503bf_mP6Bf7KXwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735908118</pqid></control><display><type>article</type><title>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</title><source>ACS Publications</source><creator>Lange, Adrian W ; Voth, Gregory A</creator><creatorcontrib>Lange, Adrian W ; Voth, Gregory A</creatorcontrib><description>We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct400516x</identifier><identifier>PMID: 26592397</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2013-09, Vol.9 (9), p.4018-4025</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</citedby><cites>FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct400516x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct400516x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26592397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lange, Adrian W</creatorcontrib><creatorcontrib>Voth, Gregory A</creatorcontrib><title>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkEtLw0AUhQdRbK0u_AMyG0EX0bkzSTpZ1mBVUETRnRBuJhObkkedh9h_b0pqV67OXXx8nHsIOQV2BYzDtXIhYxHEP3tkDFGYBEnM4_3dDXJEjqxdMiZEyMUhGfE4SrhIpmPy8eRrVwXWodN0tlqZDtWCuo6mC91UCmv6qlG56rtya1q1dG7ws9GtozdodUFfPLbONwNtnVnTFGvla3RV19pjclBibfXJNifkfX77lt4Hj893D-nsMUAhwQV5KbSMOWLeZxKhLCHMuWYlDwsoRBEppqaJ4DCVHCTmXOgcoUClo1JyIcWEXAzevv6X19ZlfRml6xpb3XmbwVRECZMAG_RyQJXprDW6zFamatCsM2DZZsxsN2bPnm21Pm90sSP_1uuB8wFAZbNl503bf_mP6Bf7KXwc</recordid><startdate>20130910</startdate><enddate>20130910</enddate><creator>Lange, Adrian W</creator><creator>Voth, Gregory A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130910</creationdate><title>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</title><author>Lange, Adrian W ; Voth, Gregory A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-bf3e862aab3e895a8f14b2e0f24d1d3d5c0c7932178218ab23eba1dace5f82383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Adrian W</creatorcontrib><creatorcontrib>Voth, Gregory A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lange, Adrian W</au><au>Voth, Gregory A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2013-09-10</date><risdate>2013</risdate><volume>9</volume><issue>9</issue><spage>4018</spage><epage>4025</epage><pages>4018-4025</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26592397</pmid><doi>10.1021/ct400516x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2013-09, Vol.9 (9), p.4018-4025 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735908118 |
source | ACS Publications |
title | Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-state%20Approach%20to%20Chemical%20Reactivity%20in%20Fragment%20Based%20Quantum%20Chemistry%20Calculations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Lange,%20Adrian%20W&rft.date=2013-09-10&rft.volume=9&rft.issue=9&rft.spage=4018&rft.epage=4025&rft.pages=4018-4025&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct400516x&rft_dat=%3Cproquest_cross%3E1735908118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735908118&rft_id=info:pmid/26592397&rfr_iscdi=true |