Robust, Basis-Set Independent Method for the Evaluation of Charge-Transfer Energy in Noncovalent Complexes
Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2015-02, Vol.11 (2), p.528-537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 2 |
container_start_page | 528 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Řezáč, Jan de la Lande, Aurélien |
description | Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the results might depend on how it is described in practice. Commonly, the charge transfer is defined in terms of molecular orbitals; in this framework, however, the charge transfer vanishes as the basis set size increases toward the complete basis set limit. This can be avoided by defining the charge transfer in terms of the spatial extent of the electron densities of the interacting molecules, but the schemes used so far do not reflect the actual electronic structure of each particular system and thus are not reliable. We propose a spatial partitioning of the system, which is based on a charge transfer-free reference state, namely superimposition of electron densities of the noninteracting fragments. We show that this method, employing constrained DFT for the calculation of the charge-transfer energy, yields reliable results and is robust with respect to the strength of the charge transfer, the basis set size, and the DFT functional used. Because it is based on DFT, the method is applicable to rather large systems. |
doi_str_mv | 10.1021/ct501115m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735903844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735903844</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-23ea823f6f19ee3e807fabc2f49d988218d0dc51b96685205e18c38a939ac61f3</originalsourceid><addsrcrecordid>eNptkE1PGzEQQC0EIkB74A8gX5CK1KUee73YxzYKH1IAqaXnleMdJxvt2qntrZp_z6LQnLjMzOHpSfMIOQd2DYzDN5slAwDZH5ATkKUudMWrw_0NakJOU1ozJkTJxTGZ8EoqpoGdkPXPsBhS_kp_mNSm4hdm-uAb3OA4fKaPmFehoS5EmldIZ39NN5jcBk-Do9OViUssXqLxyWGkM49xuaWtp0_B2zCyb4pp6Dcd_sP0iRw50yX8_L7PyO_b2cv0vpg_3z1Mv88LI0Dmggs0igtXOdCIAhW7cWZhuSt1o5XioBrWWAkLXVVKciYRlBXKaKGNrcCJM_Jl593E8GfAlOu-TRa7zngMQ6rhRkjNhCrLEb3aoTaGlCK6ehPb3sRtDax-S1vv047sxbt2WPTY7Mn_LUfgcgcYm-p1GKIfv_xA9Aq7Un_q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735903844</pqid></control><display><type>article</type><title>Robust, Basis-Set Independent Method for the Evaluation of Charge-Transfer Energy in Noncovalent Complexes</title><source>ACS Publications</source><creator>Řezáč, Jan ; de la Lande, Aurélien</creator><creatorcontrib>Řezáč, Jan ; de la Lande, Aurélien</creatorcontrib><description>Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the results might depend on how it is described in practice. Commonly, the charge transfer is defined in terms of molecular orbitals; in this framework, however, the charge transfer vanishes as the basis set size increases toward the complete basis set limit. This can be avoided by defining the charge transfer in terms of the spatial extent of the electron densities of the interacting molecules, but the schemes used so far do not reflect the actual electronic structure of each particular system and thus are not reliable. We propose a spatial partitioning of the system, which is based on a charge transfer-free reference state, namely superimposition of electron densities of the noninteracting fragments. We show that this method, employing constrained DFT for the calculation of the charge-transfer energy, yields reliable results and is robust with respect to the strength of the charge transfer, the basis set size, and the DFT functional used. Because it is based on DFT, the method is applicable to rather large systems.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct501115m</identifier><identifier>PMID: 26580910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2015-02, Vol.11 (2), p.528-537</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-23ea823f6f19ee3e807fabc2f49d988218d0dc51b96685205e18c38a939ac61f3</citedby><cites>FETCH-LOGICAL-a315t-23ea823f6f19ee3e807fabc2f49d988218d0dc51b96685205e18c38a939ac61f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct501115m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct501115m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26580910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>de la Lande, Aurélien</creatorcontrib><title>Robust, Basis-Set Independent Method for the Evaluation of Charge-Transfer Energy in Noncovalent Complexes</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the results might depend on how it is described in practice. Commonly, the charge transfer is defined in terms of molecular orbitals; in this framework, however, the charge transfer vanishes as the basis set size increases toward the complete basis set limit. This can be avoided by defining the charge transfer in terms of the spatial extent of the electron densities of the interacting molecules, but the schemes used so far do not reflect the actual electronic structure of each particular system and thus are not reliable. We propose a spatial partitioning of the system, which is based on a charge transfer-free reference state, namely superimposition of electron densities of the noninteracting fragments. We show that this method, employing constrained DFT for the calculation of the charge-transfer energy, yields reliable results and is robust with respect to the strength of the charge transfer, the basis set size, and the DFT functional used. Because it is based on DFT, the method is applicable to rather large systems.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkE1PGzEQQC0EIkB74A8gX5CK1KUee73YxzYKH1IAqaXnleMdJxvt2qntrZp_z6LQnLjMzOHpSfMIOQd2DYzDN5slAwDZH5ATkKUudMWrw_0NakJOU1ozJkTJxTGZ8EoqpoGdkPXPsBhS_kp_mNSm4hdm-uAb3OA4fKaPmFehoS5EmldIZ39NN5jcBk-Do9OViUssXqLxyWGkM49xuaWtp0_B2zCyb4pp6Dcd_sP0iRw50yX8_L7PyO_b2cv0vpg_3z1Mv88LI0Dmggs0igtXOdCIAhW7cWZhuSt1o5XioBrWWAkLXVVKciYRlBXKaKGNrcCJM_Jl593E8GfAlOu-TRa7zngMQ6rhRkjNhCrLEb3aoTaGlCK6ehPb3sRtDax-S1vv047sxbt2WPTY7Mn_LUfgcgcYm-p1GKIfv_xA9Aq7Un_q</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Řezáč, Jan</creator><creator>de la Lande, Aurélien</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150210</creationdate><title>Robust, Basis-Set Independent Method for the Evaluation of Charge-Transfer Energy in Noncovalent Complexes</title><author>Řezáč, Jan ; de la Lande, Aurélien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-23ea823f6f19ee3e807fabc2f49d988218d0dc51b96685205e18c38a939ac61f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>de la Lande, Aurélien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Řezáč, Jan</au><au>de la Lande, Aurélien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust, Basis-Set Independent Method for the Evaluation of Charge-Transfer Energy in Noncovalent Complexes</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-02-10</date><risdate>2015</risdate><volume>11</volume><issue>2</issue><spage>528</spage><epage>537</epage><pages>528-537</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the results might depend on how it is described in practice. Commonly, the charge transfer is defined in terms of molecular orbitals; in this framework, however, the charge transfer vanishes as the basis set size increases toward the complete basis set limit. This can be avoided by defining the charge transfer in terms of the spatial extent of the electron densities of the interacting molecules, but the schemes used so far do not reflect the actual electronic structure of each particular system and thus are not reliable. We propose a spatial partitioning of the system, which is based on a charge transfer-free reference state, namely superimposition of electron densities of the noninteracting fragments. We show that this method, employing constrained DFT for the calculation of the charge-transfer energy, yields reliable results and is robust with respect to the strength of the charge transfer, the basis set size, and the DFT functional used. Because it is based on DFT, the method is applicable to rather large systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26580910</pmid><doi>10.1021/ct501115m</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-02, Vol.11 (2), p.528-537 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735903844 |
source | ACS Publications |
title | Robust, Basis-Set Independent Method for the Evaluation of Charge-Transfer Energy in Noncovalent Complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust,%20Basis-Set%20Independent%20Method%20for%20the%20Evaluation%20of%20Charge-Transfer%20Energy%20in%20Noncovalent%20Complexes&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=R%CC%8Ceza%CC%81c%CC%8C,%20Jan&rft.date=2015-02-10&rft.volume=11&rft.issue=2&rft.spage=528&rft.epage=537&rft.pages=528-537&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct501115m&rft_dat=%3Cproquest_cross%3E1735903844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735903844&rft_id=info:pmid/26580910&rfr_iscdi=true |