Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model

Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil‐atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grassl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2005-09, Vol.19 (3), p.GB3003.1-n/a
Hauptverfasser: Yoo, Kyungsoo, Amundson, Ronald, Heimsath, Arjun M., Dietrich, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page GB3003.1
container_title Global biogeochemical cycles
container_volume 19
creator Yoo, Kyungsoo
Amundson, Ronald
Heimsath, Arjun M.
Dietrich, William E.
description Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil‐atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grasslands in central California. The sites have contrasting erosional mechanisms: biological perturbation (Tennessee Valley (TV)) versus clay‐rich soil creep (Black Diamond (BD)). The average SOC erosion rates from convex slopes were 1.4–2.7 g C m−2 yr−1 at TV and 5–8 g C m−2 yr−1 at BD, values that are
doi_str_mv 10.1029/2004GB002271
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17356244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17356244</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3996-2d235a0e52c2558111a9954819a0001a111f20227c196ed57513527dfa214a133</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EEkvhxgfwBU6EevwvMTe6KlukCpAAcbSGxGkNThw8WZV-e7zainLiNNLT7z3Ne4w9B_EahHSnUgi9OxNCyhYesA04rRsnpX7INqLrbGOlso_ZE6IfQoA2xm1YOi-ZYp55Hvl-STgP_DqmRCkvgVOOiedyhXPseY_le57f8G2uXJyv-BhDGvgUkPYlTGFeid_E9ZojpzDEg8DXgjMtuax8ykNIT9mjEROFZ3f3hH19d_5le9Fcfty93769bFA5Zxs5SGVQBCN7aUwHAOic0R04FPVxrMIoDyV7cDYMpjWgjGyHESVoBKVO2Mtj7lLyr32g1U-R-pBqvZD35KFVxkqtK_jqCPZ1BSph9EuJE5ZbD8IfJvX_TlrxF3e5SD2msbbrI917WgmdA1c5OHI3MYXb_2b63dkWoLXV0xw9kdbw-68Hy09vW9Ua_-3Dzjtx8emz0tZr9QdUXZJC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17356244</pqid></control><display><type>article</type><title>Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model</title><source>Wiley Online Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yoo, Kyungsoo ; Amundson, Ronald ; Heimsath, Arjun M. ; Dietrich, William E.</creator><creatorcontrib>Yoo, Kyungsoo ; Amundson, Ronald ; Heimsath, Arjun M. ; Dietrich, William E.</creatorcontrib><description>Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil‐atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grasslands in central California. The sites have contrasting erosional mechanisms: biological perturbation (Tennessee Valley (TV)) versus clay‐rich soil creep (Black Diamond (BD)). The average SOC erosion rates from convex slopes were 1.4–2.7 g C m−2 yr−1 at TV and 5–8 g C m−2 yr−1 at BD, values that are &lt;10% of above ground net primary productivity (ANPP) at both sites. The eroded soil accumulates on depositional slopes. The long term SOC accumulation (or C sink) rates are ∼1.9 g C m−2 yr−1 in the TV hollow and 1.7–2.8 g C m−2 yr−1 in the BD footslope. We found that the hillslope C sink is driven primarily by the burial of in situ plant production rather than preservation of eroded SOC, a finding that differs from existing hypotheses. At TV, the net sequestration of atmospheric C by long‐term hollow evacuation and refilling depends on the fate of the C exported from the zero order watershed. This study suggests that erosion and deposition are coupled processes that create a previously unrecognized C sink in undisturbed upland watersheds, with a potential to substantially affect the global C balance presently, and over geological timescales.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/2004GB002271</identifier><identifier>CODEN: GBCYEP</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Geochemistry ; hillslope sediment transport ; soil erosion and deposition ; soil organic carbon ; Synecology</subject><ispartof>Global biogeochemical cycles, 2005-09, Vol.19 (3), p.GB3003.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3996-2d235a0e52c2558111a9954819a0001a111f20227c196ed57513527dfa214a133</citedby><cites>FETCH-LOGICAL-a3996-2d235a0e52c2558111a9954819a0001a111f20227c196ed57513527dfa214a133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004GB002271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004GB002271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17218919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Kyungsoo</creatorcontrib><creatorcontrib>Amundson, Ronald</creatorcontrib><creatorcontrib>Heimsath, Arjun M.</creatorcontrib><creatorcontrib>Dietrich, William E.</creatorcontrib><title>Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem. Cycles</addtitle><description>Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil‐atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grasslands in central California. The sites have contrasting erosional mechanisms: biological perturbation (Tennessee Valley (TV)) versus clay‐rich soil creep (Black Diamond (BD)). The average SOC erosion rates from convex slopes were 1.4–2.7 g C m−2 yr−1 at TV and 5–8 g C m−2 yr−1 at BD, values that are &lt;10% of above ground net primary productivity (ANPP) at both sites. The eroded soil accumulates on depositional slopes. The long term SOC accumulation (or C sink) rates are ∼1.9 g C m−2 yr−1 in the TV hollow and 1.7–2.8 g C m−2 yr−1 in the BD footslope. We found that the hillslope C sink is driven primarily by the burial of in situ plant production rather than preservation of eroded SOC, a finding that differs from existing hypotheses. At TV, the net sequestration of atmospheric C by long‐term hollow evacuation and refilling depends on the fate of the C exported from the zero order watershed. This study suggests that erosion and deposition are coupled processes that create a previously unrecognized C sink in undisturbed upland watersheds, with a potential to substantially affect the global C balance presently, and over geological timescales.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Geochemistry</subject><subject>hillslope sediment transport</subject><subject>soil erosion and deposition</subject><subject>soil organic carbon</subject><subject>Synecology</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS0EEkvhxgfwBU6EevwvMTe6KlukCpAAcbSGxGkNThw8WZV-e7zainLiNNLT7z3Ne4w9B_EahHSnUgi9OxNCyhYesA04rRsnpX7INqLrbGOlso_ZE6IfQoA2xm1YOi-ZYp55Hvl-STgP_DqmRCkvgVOOiedyhXPseY_le57f8G2uXJyv-BhDGvgUkPYlTGFeid_E9ZojpzDEg8DXgjMtuax8ykNIT9mjEROFZ3f3hH19d_5le9Fcfty93769bFA5Zxs5SGVQBCN7aUwHAOic0R04FPVxrMIoDyV7cDYMpjWgjGyHESVoBKVO2Mtj7lLyr32g1U-R-pBqvZD35KFVxkqtK_jqCPZ1BSph9EuJE5ZbD8IfJvX_TlrxF3e5SD2msbbrI917WgmdA1c5OHI3MYXb_2b63dkWoLXV0xw9kdbw-68Hy09vW9Ua_-3Dzjtx8emz0tZr9QdUXZJC</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Yoo, Kyungsoo</creator><creator>Amundson, Ronald</creator><creator>Heimsath, Arjun M.</creator><creator>Dietrich, William E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200509</creationdate><title>Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model</title><author>Yoo, Kyungsoo ; Amundson, Ronald ; Heimsath, Arjun M. ; Dietrich, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3996-2d235a0e52c2558111a9954819a0001a111f20227c196ed57513527dfa214a133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Geochemistry</topic><topic>hillslope sediment transport</topic><topic>soil erosion and deposition</topic><topic>soil organic carbon</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Kyungsoo</creatorcontrib><creatorcontrib>Amundson, Ronald</creatorcontrib><creatorcontrib>Heimsath, Arjun M.</creatorcontrib><creatorcontrib>Dietrich, William E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Kyungsoo</au><au>Amundson, Ronald</au><au>Heimsath, Arjun M.</au><au>Dietrich, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem. Cycles</addtitle><date>2005-09</date><risdate>2005</risdate><volume>19</volume><issue>3</issue><spage>GB3003.1</spage><epage>n/a</epage><pages>GB3003.1-n/a</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><coden>GBCYEP</coden><abstract>Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil‐atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grasslands in central California. The sites have contrasting erosional mechanisms: biological perturbation (Tennessee Valley (TV)) versus clay‐rich soil creep (Black Diamond (BD)). The average SOC erosion rates from convex slopes were 1.4–2.7 g C m−2 yr−1 at TV and 5–8 g C m−2 yr−1 at BD, values that are &lt;10% of above ground net primary productivity (ANPP) at both sites. The eroded soil accumulates on depositional slopes. The long term SOC accumulation (or C sink) rates are ∼1.9 g C m−2 yr−1 in the TV hollow and 1.7–2.8 g C m−2 yr−1 in the BD footslope. We found that the hillslope C sink is driven primarily by the burial of in situ plant production rather than preservation of eroded SOC, a finding that differs from existing hypotheses. At TV, the net sequestration of atmospheric C by long‐term hollow evacuation and refilling depends on the fate of the C exported from the zero order watershed. This study suggests that erosion and deposition are coupled processes that create a previously unrecognized C sink in undisturbed upland watersheds, with a potential to substantially affect the global C balance presently, and over geological timescales.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004GB002271</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2005-09, Vol.19 (3), p.GB3003.1-n/a
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_miscellaneous_17356244
source Wiley Online Library; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell AGU Digital Archive; EZB-FREE-00999 freely available EZB journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Freshwater
Fundamental and applied biological sciences. Psychology
General aspects
Geochemistry
hillslope sediment transport
soil erosion and deposition
soil organic carbon
Synecology
title Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Erosion%20of%20upland%20hillslope%20soil%20organic%20carbon:%20Coupling%20field%20measurements%20with%20a%20sediment%20transport%20model&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Yoo,%20Kyungsoo&rft.date=2005-09&rft.volume=19&rft.issue=3&rft.spage=GB3003.1&rft.epage=n/a&rft.pages=GB3003.1-n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft.coden=GBCYEP&rft_id=info:doi/10.1029/2004GB002271&rft_dat=%3Cproquest_cross%3E17356244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17356244&rft_id=info:pmid/&rfr_iscdi=true