Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores

A three-dimensional numerical simulator based on Brownian dynamics (BD) for the study of ion transport through membrane pores is presented. Published BD implementations suffer from severe shortcomings in accuracy and efficiency. Such limitations arise largely from (i) the nonrigorous treatment of un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2014-08, Vol.10 (8), p.2911-2926
Hauptverfasser: Berti, Claudio, Furini, Simone, Gillespie, Dirk, Boda, Dezső, Eisenberg, Robert S, Sangiorgi, Enrico, Fiegna, Claudio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2926
container_issue 8
container_start_page 2911
container_title Journal of chemical theory and computation
container_volume 10
creator Berti, Claudio
Furini, Simone
Gillespie, Dirk
Boda, Dezső
Eisenberg, Robert S
Sangiorgi, Enrico
Fiegna, Claudio
description A three-dimensional numerical simulator based on Brownian dynamics (BD) for the study of ion transport through membrane pores is presented. Published BD implementations suffer from severe shortcomings in accuracy and efficiency. Such limitations arise largely from (i) the nonrigorous treatment of unphysical ion configurations; (ii) the assumption that ion motion occurs always in the high friction limit, (iii) the inefficient solution of the Poisson equation with dielectric interfaces, and (iv) the inaccurate treatment of boundary conditions for ion concentrations. Here, we introduce a new BD simulator in which these critical issues are addressed, implementing advanced techniques: (i) unphysical ion configurations are managed with a novel retracing technique; (ii) ion motion is evaluated integrating the Langevin equation with the algorithm of van Gunsteren and Berendsen (Mol. Phys. 1982, 45, 637–647); (iii) dielectric response in the Poisson equation is solved at run time with the Induced Charge Computation (ICC) method of Boda et al. (J. Chem. Phys. 2006, 125, 034901); and (iv) boundary conditions for ion concentrations are enforced by an accurate Grand Canonical Monte Carlo (GCMC) algorithm. Although some of these techniques have already been separately adopted for the simulation of membrane pores, our tool is the first BD implementation, to our knowledge, that fully retrace ions to avoid unphysical configurations and that computes dielectric interactions at each time step. Most other BD codes have been used on wide channels. Our BD simulator is specifically designed for narrow and crowded ion channels (e.g., L-type calcium channels) where all the aforementioned techniques are necessary for accurate results. In this paper, we introduce our tool, focusing on the implementation and testing of key features and we illustrate its capabilities through the analysis of test cases. The source code is available for download at www.phys.rush.edu/BROWNIES.
doi_str_mv 10.1021/ct4011008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735331767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735331767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-7fc72258b2d693eb4d1474525e92805c8390aa20d27adacdd18afef42726e6f03</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK0e_AOyF0EP0f3IZjdHbf0oVCy0nsMmO7EpSbbuJkj_vSutPXkYZmCeeRkehC4puaOE0fuiiwmlhKgjNKQiTqM0YcnxYaZqgM68XxPCecz4KRqwRCjFEjlEZrlyANGkaqD1lW11jR-d_W4r3eLJttVNVXi8qJq-1p11uAzVrQAvut5ssS3x1LZ4Dq4B3YXrsHO2_1zhN2hyp1vAc-vAn6OTUtceLvZ9hD6en5bj12j2_jIdP8wizZXoIlkWkjGhcmaSlEMeGxrLWDABKVNEFIqnRGtGDJPa6MIYqnQJZcwkSyApCR-hm13uxtmvHnyXNZUvoK7DJ7b3GZVccE5lIgN6u0MLZ713UGYbVzXabTNKsl-p2UFqYK_2sX3egDmQfxYDcL0DdOGzte1d0Oj_CfoBkd99qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735331767</pqid></control><display><type>article</type><title>Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores</title><source>ACS Publications</source><creator>Berti, Claudio ; Furini, Simone ; Gillespie, Dirk ; Boda, Dezső ; Eisenberg, Robert S ; Sangiorgi, Enrico ; Fiegna, Claudio</creator><creatorcontrib>Berti, Claudio ; Furini, Simone ; Gillespie, Dirk ; Boda, Dezső ; Eisenberg, Robert S ; Sangiorgi, Enrico ; Fiegna, Claudio</creatorcontrib><description>A three-dimensional numerical simulator based on Brownian dynamics (BD) for the study of ion transport through membrane pores is presented. Published BD implementations suffer from severe shortcomings in accuracy and efficiency. Such limitations arise largely from (i) the nonrigorous treatment of unphysical ion configurations; (ii) the assumption that ion motion occurs always in the high friction limit, (iii) the inefficient solution of the Poisson equation with dielectric interfaces, and (iv) the inaccurate treatment of boundary conditions for ion concentrations. Here, we introduce a new BD simulator in which these critical issues are addressed, implementing advanced techniques: (i) unphysical ion configurations are managed with a novel retracing technique; (ii) ion motion is evaluated integrating the Langevin equation with the algorithm of van Gunsteren and Berendsen (Mol. Phys. 1982, 45, 637–647); (iii) dielectric response in the Poisson equation is solved at run time with the Induced Charge Computation (ICC) method of Boda et al. (J. Chem. Phys. 2006, 125, 034901); and (iv) boundary conditions for ion concentrations are enforced by an accurate Grand Canonical Monte Carlo (GCMC) algorithm. Although some of these techniques have already been separately adopted for the simulation of membrane pores, our tool is the first BD implementation, to our knowledge, that fully retrace ions to avoid unphysical configurations and that computes dielectric interactions at each time step. Most other BD codes have been used on wide channels. Our BD simulator is specifically designed for narrow and crowded ion channels (e.g., L-type calcium channels) where all the aforementioned techniques are necessary for accurate results. In this paper, we introduce our tool, focusing on the implementation and testing of key features and we illustrate its capabilities through the analysis of test cases. The source code is available for download at www.phys.rush.edu/BROWNIES.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct4011008</identifier><identifier>PMID: 26588267</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2014-08, Vol.10 (8), p.2911-2926</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-7fc72258b2d693eb4d1474525e92805c8390aa20d27adacdd18afef42726e6f03</citedby><cites>FETCH-LOGICAL-a385t-7fc72258b2d693eb4d1474525e92805c8390aa20d27adacdd18afef42726e6f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct4011008$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct4011008$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26588267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berti, Claudio</creatorcontrib><creatorcontrib>Furini, Simone</creatorcontrib><creatorcontrib>Gillespie, Dirk</creatorcontrib><creatorcontrib>Boda, Dezső</creatorcontrib><creatorcontrib>Eisenberg, Robert S</creatorcontrib><creatorcontrib>Sangiorgi, Enrico</creatorcontrib><creatorcontrib>Fiegna, Claudio</creatorcontrib><title>Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A three-dimensional numerical simulator based on Brownian dynamics (BD) for the study of ion transport through membrane pores is presented. Published BD implementations suffer from severe shortcomings in accuracy and efficiency. Such limitations arise largely from (i) the nonrigorous treatment of unphysical ion configurations; (ii) the assumption that ion motion occurs always in the high friction limit, (iii) the inefficient solution of the Poisson equation with dielectric interfaces, and (iv) the inaccurate treatment of boundary conditions for ion concentrations. Here, we introduce a new BD simulator in which these critical issues are addressed, implementing advanced techniques: (i) unphysical ion configurations are managed with a novel retracing technique; (ii) ion motion is evaluated integrating the Langevin equation with the algorithm of van Gunsteren and Berendsen (Mol. Phys. 1982, 45, 637–647); (iii) dielectric response in the Poisson equation is solved at run time with the Induced Charge Computation (ICC) method of Boda et al. (J. Chem. Phys. 2006, 125, 034901); and (iv) boundary conditions for ion concentrations are enforced by an accurate Grand Canonical Monte Carlo (GCMC) algorithm. Although some of these techniques have already been separately adopted for the simulation of membrane pores, our tool is the first BD implementation, to our knowledge, that fully retrace ions to avoid unphysical configurations and that computes dielectric interactions at each time step. Most other BD codes have been used on wide channels. Our BD simulator is specifically designed for narrow and crowded ion channels (e.g., L-type calcium channels) where all the aforementioned techniques are necessary for accurate results. In this paper, we introduce our tool, focusing on the implementation and testing of key features and we illustrate its capabilities through the analysis of test cases. The source code is available for download at www.phys.rush.edu/BROWNIES.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK0e_AOyF0EP0f3IZjdHbf0oVCy0nsMmO7EpSbbuJkj_vSutPXkYZmCeeRkehC4puaOE0fuiiwmlhKgjNKQiTqM0YcnxYaZqgM68XxPCecz4KRqwRCjFEjlEZrlyANGkaqD1lW11jR-d_W4r3eLJttVNVXi8qJq-1p11uAzVrQAvut5ssS3x1LZ4Dq4B3YXrsHO2_1zhN2hyp1vAc-vAn6OTUtceLvZ9hD6en5bj12j2_jIdP8wizZXoIlkWkjGhcmaSlEMeGxrLWDABKVNEFIqnRGtGDJPa6MIYqnQJZcwkSyApCR-hm13uxtmvHnyXNZUvoK7DJ7b3GZVccE5lIgN6u0MLZ713UGYbVzXabTNKsl-p2UFqYK_2sX3egDmQfxYDcL0DdOGzte1d0Oj_CfoBkd99qg</recordid><startdate>20140812</startdate><enddate>20140812</enddate><creator>Berti, Claudio</creator><creator>Furini, Simone</creator><creator>Gillespie, Dirk</creator><creator>Boda, Dezső</creator><creator>Eisenberg, Robert S</creator><creator>Sangiorgi, Enrico</creator><creator>Fiegna, Claudio</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140812</creationdate><title>Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores</title><author>Berti, Claudio ; Furini, Simone ; Gillespie, Dirk ; Boda, Dezső ; Eisenberg, Robert S ; Sangiorgi, Enrico ; Fiegna, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-7fc72258b2d693eb4d1474525e92805c8390aa20d27adacdd18afef42726e6f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berti, Claudio</creatorcontrib><creatorcontrib>Furini, Simone</creatorcontrib><creatorcontrib>Gillespie, Dirk</creatorcontrib><creatorcontrib>Boda, Dezső</creatorcontrib><creatorcontrib>Eisenberg, Robert S</creatorcontrib><creatorcontrib>Sangiorgi, Enrico</creatorcontrib><creatorcontrib>Fiegna, Claudio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berti, Claudio</au><au>Furini, Simone</au><au>Gillespie, Dirk</au><au>Boda, Dezső</au><au>Eisenberg, Robert S</au><au>Sangiorgi, Enrico</au><au>Fiegna, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2014-08-12</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>2911</spage><epage>2926</epage><pages>2911-2926</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>A three-dimensional numerical simulator based on Brownian dynamics (BD) for the study of ion transport through membrane pores is presented. Published BD implementations suffer from severe shortcomings in accuracy and efficiency. Such limitations arise largely from (i) the nonrigorous treatment of unphysical ion configurations; (ii) the assumption that ion motion occurs always in the high friction limit, (iii) the inefficient solution of the Poisson equation with dielectric interfaces, and (iv) the inaccurate treatment of boundary conditions for ion concentrations. Here, we introduce a new BD simulator in which these critical issues are addressed, implementing advanced techniques: (i) unphysical ion configurations are managed with a novel retracing technique; (ii) ion motion is evaluated integrating the Langevin equation with the algorithm of van Gunsteren and Berendsen (Mol. Phys. 1982, 45, 637–647); (iii) dielectric response in the Poisson equation is solved at run time with the Induced Charge Computation (ICC) method of Boda et al. (J. Chem. Phys. 2006, 125, 034901); and (iv) boundary conditions for ion concentrations are enforced by an accurate Grand Canonical Monte Carlo (GCMC) algorithm. Although some of these techniques have already been separately adopted for the simulation of membrane pores, our tool is the first BD implementation, to our knowledge, that fully retrace ions to avoid unphysical configurations and that computes dielectric interactions at each time step. Most other BD codes have been used on wide channels. Our BD simulator is specifically designed for narrow and crowded ion channels (e.g., L-type calcium channels) where all the aforementioned techniques are necessary for accurate results. In this paper, we introduce our tool, focusing on the implementation and testing of key features and we illustrate its capabilities through the analysis of test cases. The source code is available for download at www.phys.rush.edu/BROWNIES.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26588267</pmid><doi>10.1021/ct4011008</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2014-08, Vol.10 (8), p.2911-2926
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1735331767
source ACS Publications
title Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Brownian%20Dynamics%20Simulator%20for%20the%20Study%20of%20Ion%20Permeation%20through%20Membrane%20Pores&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Berti,%20Claudio&rft.date=2014-08-12&rft.volume=10&rft.issue=8&rft.spage=2911&rft.epage=2926&rft.pages=2911-2926&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct4011008&rft_dat=%3Cproquest_cross%3E1735331767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735331767&rft_id=info:pmid/26588267&rfr_iscdi=true