Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime
We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2015-12, Vol.26 (12), p.2115-2124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2124 |
---|---|
container_issue | 12 |
container_start_page | 2115 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 26 |
creator | Nikolić, Dragan Madzunkov, Stojan M. Darrach, Murray R. |
description | We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program’s efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.
Graphical Abstract
ᅟ |
doi_str_mv | 10.1007/s13361-015-1236-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735331600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951088727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-859a7774285f11253c2b4ebdce0ad3142ee05174a247632ec5bfc98a15d1e4523</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWqs_wIsEvHhwNZOPza63UvwotliknkO6O1squ5uadBH99UZaRQRPmZBn3sk8hJwAuwTG9FUAIVJIGKgEuEgTtUN6kOk8gXjdjTWTMmGCqQNyGMILY6BZrvfJAU95lkqV9sjD0DWrbo2eTlyJ9bJdUFdR29KRa-nM2xWd2BDooLX1-wf6Czq1fk1H13Ts3ujUYwidR_qEi2WDR2SvsnXA4-3ZJ8-3N7PhfTJ-vBsNB-OkEJqvk0zlVmsteaaq-FElCj6XOC8LZLYUIDkiU6Cl5VKngmOh5lWRZxZUCSgVF31yvsldeffaYVibZhkKrGvbouuCAS2UEJAyFtGzP-iL63xcJlK5ApZlmutIwYYqvAvBY2VWftlY_26AmS_TZmPaRNPmy7RRsed0m9zNGyx_Or7VRoBvgBCf2gX6X6P_Tf0EY9CFbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951088727</pqid></control><display><type>article</type><title>Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime</title><source>SpringerNature Journals</source><creator>Nikolić, Dragan ; Madzunkov, Stojan M. ; Darrach, Murray R.</creator><creatorcontrib>Nikolić, Dragan ; Madzunkov, Stojan M. ; Darrach, Murray R.</creatorcontrib><description>We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program’s efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.
Graphical Abstract
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-015-1236-5</identifier><identifier>PMID: 26286456</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computer memory ; Computer simulation ; Ion dynamics ; Ion trajectories ; Ions ; Low pressure ; Mass spectra ; Mass spectrometry ; Mathematical models ; Organic Chemistry ; Proteomics ; Quadrupoles ; Research Article ; Software ; Trajectories ; Trajectory analysis</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2015-12, Vol.26 (12), p.2115-2124</ispartof><rights>American Society for Mass Spectrometry 2015</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-859a7774285f11253c2b4ebdce0ad3142ee05174a247632ec5bfc98a15d1e4523</citedby><cites>FETCH-LOGICAL-c372t-859a7774285f11253c2b4ebdce0ad3142ee05174a247632ec5bfc98a15d1e4523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-015-1236-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-015-1236-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26286456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikolić, Dragan</creatorcontrib><creatorcontrib>Madzunkov, Stojan M.</creatorcontrib><creatorcontrib>Darrach, Murray R.</creatorcontrib><title>Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program’s efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.
Graphical Abstract
ᅟ</description><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer memory</subject><subject>Computer simulation</subject><subject>Ion dynamics</subject><subject>Ion trajectories</subject><subject>Ions</subject><subject>Low pressure</subject><subject>Mass spectra</subject><subject>Mass spectrometry</subject><subject>Mathematical models</subject><subject>Organic Chemistry</subject><subject>Proteomics</subject><subject>Quadrupoles</subject><subject>Research Article</subject><subject>Software</subject><subject>Trajectories</subject><subject>Trajectory analysis</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWqs_wIsEvHhwNZOPza63UvwotliknkO6O1squ5uadBH99UZaRQRPmZBn3sk8hJwAuwTG9FUAIVJIGKgEuEgTtUN6kOk8gXjdjTWTMmGCqQNyGMILY6BZrvfJAU95lkqV9sjD0DWrbo2eTlyJ9bJdUFdR29KRa-nM2xWd2BDooLX1-wf6Czq1fk1H13Ts3ujUYwidR_qEi2WDR2SvsnXA4-3ZJ8-3N7PhfTJ-vBsNB-OkEJqvk0zlVmsteaaq-FElCj6XOC8LZLYUIDkiU6Cl5VKngmOh5lWRZxZUCSgVF31yvsldeffaYVibZhkKrGvbouuCAS2UEJAyFtGzP-iL63xcJlK5ApZlmutIwYYqvAvBY2VWftlY_26AmS_TZmPaRNPmy7RRsed0m9zNGyx_Or7VRoBvgBCf2gX6X6P_Tf0EY9CFbg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Nikolić, Dragan</creator><creator>Madzunkov, Stojan M.</creator><creator>Darrach, Murray R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime</title><author>Nikolić, Dragan ; Madzunkov, Stojan M. ; Darrach, Murray R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-859a7774285f11253c2b4ebdce0ad3142ee05174a247632ec5bfc98a15d1e4523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer memory</topic><topic>Computer simulation</topic><topic>Ion dynamics</topic><topic>Ion trajectories</topic><topic>Ions</topic><topic>Low pressure</topic><topic>Mass spectra</topic><topic>Mass spectrometry</topic><topic>Mathematical models</topic><topic>Organic Chemistry</topic><topic>Proteomics</topic><topic>Quadrupoles</topic><topic>Research Article</topic><topic>Software</topic><topic>Trajectories</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolić, Dragan</creatorcontrib><creatorcontrib>Madzunkov, Stojan M.</creatorcontrib><creatorcontrib>Darrach, Murray R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolić, Dragan</au><au>Madzunkov, Stojan M.</au><au>Darrach, Murray R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>26</volume><issue>12</issue><spage>2115</spage><epage>2124</epage><pages>2115-2124</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program’s efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.
Graphical Abstract
ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26286456</pmid><doi>10.1007/s13361-015-1236-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2015-12, Vol.26 (12), p.2115-2124 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735331600 |
source | SpringerNature Journals |
subjects | Analytical Chemistry Bioinformatics Biotechnology Chemistry Chemistry and Materials Science Computer memory Computer simulation Ion dynamics Ion trajectories Ions Low pressure Mass spectra Mass spectrometry Mathematical models Organic Chemistry Proteomics Quadrupoles Research Article Software Trajectories Trajectory analysis |
title | Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Modeling%20of%20an%20Ion%20Trap%20Mass%20Analyzer,%20Part%20I:%20Low%20Pressure%20Regime&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Nikoli%C4%87,%20Dragan&rft.date=2015-12-01&rft.volume=26&rft.issue=12&rft.spage=2115&rft.epage=2124&rft.pages=2115-2124&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-015-1236-5&rft_dat=%3Cproquest_cross%3E1951088727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951088727&rft_id=info:pmid/26286456&rfr_iscdi=true |