RM1 Model for the Prediction of Geometries of Complexes of the Trications of Eu, Gd, and Tb

All versions of our previous Sparkle Model were very accurate in predicting lanthanide–lanthanide distances in complexes where the two lanthanide ions directly face each other, and mainly lanthanide–oxygen, and lanthanide–nitrogen distances, which are by far the most common ones in lanthanide comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2014-08, Vol.10 (8), p.3031-3037
Hauptverfasser: Filho, Manoel A. M, Dutra, José Diogo L, Cavalcanti, Higo L. B, Rocha, Gerd B, Simas, Alfredo M, Freire, Ricardo O
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3037
container_issue 8
container_start_page 3031
container_title Journal of chemical theory and computation
container_volume 10
creator Filho, Manoel A. M
Dutra, José Diogo L
Cavalcanti, Higo L. B
Rocha, Gerd B
Simas, Alfredo M
Freire, Ricardo O
description All versions of our previous Sparkle Model were very accurate in predicting lanthanide–lanthanide distances in complexes where the two lanthanide ions directly face each other, and mainly lanthanide–oxygen, and lanthanide–nitrogen distances, which are by far the most common ones in lanthanide complexes. In this article, we are advancing for the first time the RM1 model for lanthanides. Designed to be a much more general NDDO model, the RM1 model for lanthanides is capable of predicting geometries of lanthanide complexes for the cases when the central lanthanide trication is directly coordinated to any other atoms, not only oxygen or nitrogen. The RM1 model for lanthanides is defined by three important attributes: (a) the orbitals, the lanthanide ion has now three electrons and a NDDO basis set made of 5d, 6s, and 6p functions; (b) the parametrization, via cluster analysis and an adequate sampling; and (c), the statistical validation of the parameters to make sure the errors behave as random around a mean. All three aspects are described in detail in the article. Results indicate that the RM1 model does extend the accuracy of the previous Sparkle Models to types of coordinating bonds other than Ln–O and Ln–N; the most common ones for Eu, Gd, and Tb, being Ln–C, Ln–S, Ln–Cl, and Ln–Br. Overall, these other coordinating bonds are now predicted within 0.06 Å of their correct values. Therefore, the RM1 model here presented is capable of predicting geometries of lanthanide complexes, materials, metal–organic frameworks, etc., with useful accuracy.
doi_str_mv 10.1021/ct400909w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735331091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735331091</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-efeae521d9a63c1b70c295f2d285257eb7fbbbfcc383784bcc0e239476ed59d33</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgipvTg19AchEUVs2fpm2OMuYUNhSZJw8lTd5iR9vMpEX99rZ27uTpzRt-PPA-CJ1TckMJo7e6CQmRRH4eoDEVoQxkxKLD_ZsmI3Ti_YYQzkPGj9GIRSJJWByO0dvLiuKVNVDi3DrcvAN-dmAK3RS2xjbHC7AVNK4A328zW21L-BqWHq9doVVvf3_m7RQvzBSr2uB1doqOclV6ONvNCXq9n69nD8HyafE4u1sGilPRBJCDAsGokSrimmYx0UyKnBmWCCZiyOI8y7Jca57wOAkzrQkwLsM4AiOk4XyCrobcrbMfLfgmrQqvoSxVDbb1KY254JwSSTt6PVDtrPcO8nTrikq575SStO8y3XfZ2YtdbJtVYPbyr7wOXA5AaZ9ubOvq7sp_gn4AzDt5jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735331091</pqid></control><display><type>article</type><title>RM1 Model for the Prediction of Geometries of Complexes of the Trications of Eu, Gd, and Tb</title><source>American Chemical Society Publications</source><creator>Filho, Manoel A. M ; Dutra, José Diogo L ; Cavalcanti, Higo L. B ; Rocha, Gerd B ; Simas, Alfredo M ; Freire, Ricardo O</creator><creatorcontrib>Filho, Manoel A. M ; Dutra, José Diogo L ; Cavalcanti, Higo L. B ; Rocha, Gerd B ; Simas, Alfredo M ; Freire, Ricardo O</creatorcontrib><description>All versions of our previous Sparkle Model were very accurate in predicting lanthanide–lanthanide distances in complexes where the two lanthanide ions directly face each other, and mainly lanthanide–oxygen, and lanthanide–nitrogen distances, which are by far the most common ones in lanthanide complexes. In this article, we are advancing for the first time the RM1 model for lanthanides. Designed to be a much more general NDDO model, the RM1 model for lanthanides is capable of predicting geometries of lanthanide complexes for the cases when the central lanthanide trication is directly coordinated to any other atoms, not only oxygen or nitrogen. The RM1 model for lanthanides is defined by three important attributes: (a) the orbitals, the lanthanide ion has now three electrons and a NDDO basis set made of 5d, 6s, and 6p functions; (b) the parametrization, via cluster analysis and an adequate sampling; and (c), the statistical validation of the parameters to make sure the errors behave as random around a mean. All three aspects are described in detail in the article. Results indicate that the RM1 model does extend the accuracy of the previous Sparkle Models to types of coordinating bonds other than Ln–O and Ln–N; the most common ones for Eu, Gd, and Tb, being Ln–C, Ln–S, Ln–Cl, and Ln–Br. Overall, these other coordinating bonds are now predicted within 0.06 Å of their correct values. Therefore, the RM1 model here presented is capable of predicting geometries of lanthanide complexes, materials, metal–organic frameworks, etc., with useful accuracy.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct400909w</identifier><identifier>PMID: 26588274</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2014-08, Vol.10 (8), p.3031-3037</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-efeae521d9a63c1b70c295f2d285257eb7fbbbfcc383784bcc0e239476ed59d33</citedby><cites>FETCH-LOGICAL-a315t-efeae521d9a63c1b70c295f2d285257eb7fbbbfcc383784bcc0e239476ed59d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct400909w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct400909w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26588274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filho, Manoel A. M</creatorcontrib><creatorcontrib>Dutra, José Diogo L</creatorcontrib><creatorcontrib>Cavalcanti, Higo L. B</creatorcontrib><creatorcontrib>Rocha, Gerd B</creatorcontrib><creatorcontrib>Simas, Alfredo M</creatorcontrib><creatorcontrib>Freire, Ricardo O</creatorcontrib><title>RM1 Model for the Prediction of Geometries of Complexes of the Trications of Eu, Gd, and Tb</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>All versions of our previous Sparkle Model were very accurate in predicting lanthanide–lanthanide distances in complexes where the two lanthanide ions directly face each other, and mainly lanthanide–oxygen, and lanthanide–nitrogen distances, which are by far the most common ones in lanthanide complexes. In this article, we are advancing for the first time the RM1 model for lanthanides. Designed to be a much more general NDDO model, the RM1 model for lanthanides is capable of predicting geometries of lanthanide complexes for the cases when the central lanthanide trication is directly coordinated to any other atoms, not only oxygen or nitrogen. The RM1 model for lanthanides is defined by three important attributes: (a) the orbitals, the lanthanide ion has now three electrons and a NDDO basis set made of 5d, 6s, and 6p functions; (b) the parametrization, via cluster analysis and an adequate sampling; and (c), the statistical validation of the parameters to make sure the errors behave as random around a mean. All three aspects are described in detail in the article. Results indicate that the RM1 model does extend the accuracy of the previous Sparkle Models to types of coordinating bonds other than Ln–O and Ln–N; the most common ones for Eu, Gd, and Tb, being Ln–C, Ln–S, Ln–Cl, and Ln–Br. Overall, these other coordinating bonds are now predicted within 0.06 Å of their correct values. Therefore, the RM1 model here presented is capable of predicting geometries of lanthanide complexes, materials, metal–organic frameworks, etc., with useful accuracy.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0E9LwzAYBvAgipvTg19AchEUVs2fpm2OMuYUNhSZJw8lTd5iR9vMpEX99rZ27uTpzRt-PPA-CJ1TckMJo7e6CQmRRH4eoDEVoQxkxKLD_ZsmI3Ti_YYQzkPGj9GIRSJJWByO0dvLiuKVNVDi3DrcvAN-dmAK3RS2xjbHC7AVNK4A328zW21L-BqWHq9doVVvf3_m7RQvzBSr2uB1doqOclV6ONvNCXq9n69nD8HyafE4u1sGilPRBJCDAsGokSrimmYx0UyKnBmWCCZiyOI8y7Jca57wOAkzrQkwLsM4AiOk4XyCrobcrbMfLfgmrQqvoSxVDbb1KY254JwSSTt6PVDtrPcO8nTrikq575SStO8y3XfZ2YtdbJtVYPbyr7wOXA5AaZ9ubOvq7sp_gn4AzDt5jA</recordid><startdate>20140812</startdate><enddate>20140812</enddate><creator>Filho, Manoel A. M</creator><creator>Dutra, José Diogo L</creator><creator>Cavalcanti, Higo L. B</creator><creator>Rocha, Gerd B</creator><creator>Simas, Alfredo M</creator><creator>Freire, Ricardo O</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140812</creationdate><title>RM1 Model for the Prediction of Geometries of Complexes of the Trications of Eu, Gd, and Tb</title><author>Filho, Manoel A. M ; Dutra, José Diogo L ; Cavalcanti, Higo L. B ; Rocha, Gerd B ; Simas, Alfredo M ; Freire, Ricardo O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-efeae521d9a63c1b70c295f2d285257eb7fbbbfcc383784bcc0e239476ed59d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filho, Manoel A. M</creatorcontrib><creatorcontrib>Dutra, José Diogo L</creatorcontrib><creatorcontrib>Cavalcanti, Higo L. B</creatorcontrib><creatorcontrib>Rocha, Gerd B</creatorcontrib><creatorcontrib>Simas, Alfredo M</creatorcontrib><creatorcontrib>Freire, Ricardo O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filho, Manoel A. M</au><au>Dutra, José Diogo L</au><au>Cavalcanti, Higo L. B</au><au>Rocha, Gerd B</au><au>Simas, Alfredo M</au><au>Freire, Ricardo O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RM1 Model for the Prediction of Geometries of Complexes of the Trications of Eu, Gd, and Tb</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2014-08-12</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>3031</spage><epage>3037</epage><pages>3031-3037</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>All versions of our previous Sparkle Model were very accurate in predicting lanthanide–lanthanide distances in complexes where the two lanthanide ions directly face each other, and mainly lanthanide–oxygen, and lanthanide–nitrogen distances, which are by far the most common ones in lanthanide complexes. In this article, we are advancing for the first time the RM1 model for lanthanides. Designed to be a much more general NDDO model, the RM1 model for lanthanides is capable of predicting geometries of lanthanide complexes for the cases when the central lanthanide trication is directly coordinated to any other atoms, not only oxygen or nitrogen. The RM1 model for lanthanides is defined by three important attributes: (a) the orbitals, the lanthanide ion has now three electrons and a NDDO basis set made of 5d, 6s, and 6p functions; (b) the parametrization, via cluster analysis and an adequate sampling; and (c), the statistical validation of the parameters to make sure the errors behave as random around a mean. All three aspects are described in detail in the article. Results indicate that the RM1 model does extend the accuracy of the previous Sparkle Models to types of coordinating bonds other than Ln–O and Ln–N; the most common ones for Eu, Gd, and Tb, being Ln–C, Ln–S, Ln–Cl, and Ln–Br. Overall, these other coordinating bonds are now predicted within 0.06 Å of their correct values. Therefore, the RM1 model here presented is capable of predicting geometries of lanthanide complexes, materials, metal–organic frameworks, etc., with useful accuracy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26588274</pmid><doi>10.1021/ct400909w</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2014-08, Vol.10 (8), p.3031-3037
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1735331091
source American Chemical Society Publications
title RM1 Model for the Prediction of Geometries of Complexes of the Trications of Eu, Gd, and Tb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RM1%20Model%20for%20the%20Prediction%20of%20Geometries%20of%20Complexes%20of%20the%20Trications%20of%20Eu,%20Gd,%20and%20Tb&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Filho,%20Manoel%20A.%20M&rft.date=2014-08-12&rft.volume=10&rft.issue=8&rft.spage=3031&rft.epage=3037&rft.pages=3031-3037&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct400909w&rft_dat=%3Cproquest_cross%3E1735331091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735331091&rft_id=info:pmid/26588274&rfr_iscdi=true