Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map
Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This st...
Gespeichert in:
Veröffentlicht in: | Cardiovascular engineering and technology 2015-09, Vol.6 (3), p.230-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 3 |
container_start_page | 230 |
container_title | Cardiovascular engineering and technology |
container_volume | 6 |
creator | Shu, Fangjun Vandenberghe, Stijn Brackett, Jaclyn Antaki, James F. |
description | Rotodynamic blood pumps (also known as
rotary
or
continuous flow
blood pumps) are commonly evaluated
in vitro
under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative (
Φ
˙
), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ–
Φ
˙
plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy. |
doi_str_mv | 10.1007/s13239-015-0231-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735330569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6e8afc62db6835488aaee85105b7948c50023c872b4fcd11ca57b1462a0bad453</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMojqgP4EaydFPNtU3d6XgFbwwOuAunaSqVNqlJi8zbm2HUpWdzbv_54XwIHVFySgkpziLljJcZoTIjjNOMbKE9qvIyE6RU23-1epuhwxg_SArOSiLYLpqxXBYFl8UeGuYdxNg2rYGx9Q77Bi9dHC3UK3zT-S_8AuNog4u4dRjwwo--XjnoW4MvO-9r_DL1wzm-d2Pw9WR-PZ68y67a3rqYBtDhhX1PHX6E4QDtNNBFe_iT99Hy5vp1fpc9PN_ezy8eMsOFGLPcKmhMzuoqV1wKpQCsVZISWRWlUEaS9LRRBatEY2pKDciioiJnQCqoheT76GTjOwT_Odk46r6NxnYdOOunqGn6n3Mi8zJJ6UZqgo8x2EYPoe0hrDQles1ab1jrxFqvWWuSbo5_7Keqt_XfxS_ZJGAbQUwr926D_vBTSCziP67f0sOJyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330569</pqid></control><display><type>article</type><title>Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Shu, Fangjun ; Vandenberghe, Stijn ; Brackett, Jaclyn ; Antaki, James F.</creator><creatorcontrib>Shu, Fangjun ; Vandenberghe, Stijn ; Brackett, Jaclyn ; Antaki, James F.</creatorcontrib><description>Rotodynamic blood pumps (also known as
rotary
or
continuous flow
blood pumps) are commonly evaluated
in vitro
under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative (
Φ
˙
), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ–
Φ
˙
plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-015-0231-0</identifier><identifier>PMID: 26577357</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Biomedicine ; Blood Flow Velocity ; Cardiology ; Centrifugation - instrumentation ; Engineering ; Equipment Design ; Heart Rate ; Heart-Assist Devices ; Hemodynamics ; Hydrodynamics ; Models, Cardiovascular ; Rheology ; Ventricular Function</subject><ispartof>Cardiovascular engineering and technology, 2015-09, Vol.6 (3), p.230-241</ispartof><rights>Biomedical Engineering Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6e8afc62db6835488aaee85105b7948c50023c872b4fcd11ca57b1462a0bad453</citedby><cites>FETCH-LOGICAL-c344t-6e8afc62db6835488aaee85105b7948c50023c872b4fcd11ca57b1462a0bad453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13239-015-0231-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13239-015-0231-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26577357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Fangjun</creatorcontrib><creatorcontrib>Vandenberghe, Stijn</creatorcontrib><creatorcontrib>Brackett, Jaclyn</creatorcontrib><creatorcontrib>Antaki, James F.</creatorcontrib><title>Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>Rotodynamic blood pumps (also known as
rotary
or
continuous flow
blood pumps) are commonly evaluated
in vitro
under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative (
Φ
˙
), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ–
Φ
˙
plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood Flow Velocity</subject><subject>Cardiology</subject><subject>Centrifugation - instrumentation</subject><subject>Engineering</subject><subject>Equipment Design</subject><subject>Heart Rate</subject><subject>Heart-Assist Devices</subject><subject>Hemodynamics</subject><subject>Hydrodynamics</subject><subject>Models, Cardiovascular</subject><subject>Rheology</subject><subject>Ventricular Function</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMojqgP4EaydFPNtU3d6XgFbwwOuAunaSqVNqlJi8zbm2HUpWdzbv_54XwIHVFySgkpziLljJcZoTIjjNOMbKE9qvIyE6RU23-1epuhwxg_SArOSiLYLpqxXBYFl8UeGuYdxNg2rYGx9Q77Bi9dHC3UK3zT-S_8AuNog4u4dRjwwo--XjnoW4MvO-9r_DL1wzm-d2Pw9WR-PZ68y67a3rqYBtDhhX1PHX6E4QDtNNBFe_iT99Hy5vp1fpc9PN_ezy8eMsOFGLPcKmhMzuoqV1wKpQCsVZISWRWlUEaS9LRRBatEY2pKDciioiJnQCqoheT76GTjOwT_Odk46r6NxnYdOOunqGn6n3Mi8zJJ6UZqgo8x2EYPoe0hrDQles1ab1jrxFqvWWuSbo5_7Keqt_XfxS_ZJGAbQUwr926D_vBTSCziP67f0sOJyw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Shu, Fangjun</creator><creator>Vandenberghe, Stijn</creator><creator>Brackett, Jaclyn</creator><creator>Antaki, James F.</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map</title><author>Shu, Fangjun ; Vandenberghe, Stijn ; Brackett, Jaclyn ; Antaki, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6e8afc62db6835488aaee85105b7948c50023c872b4fcd11ca57b1462a0bad453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood Flow Velocity</topic><topic>Cardiology</topic><topic>Centrifugation - instrumentation</topic><topic>Engineering</topic><topic>Equipment Design</topic><topic>Heart Rate</topic><topic>Heart-Assist Devices</topic><topic>Hemodynamics</topic><topic>Hydrodynamics</topic><topic>Models, Cardiovascular</topic><topic>Rheology</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Fangjun</creatorcontrib><creatorcontrib>Vandenberghe, Stijn</creatorcontrib><creatorcontrib>Brackett, Jaclyn</creatorcontrib><creatorcontrib>Antaki, James F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Fangjun</au><au>Vandenberghe, Stijn</au><au>Brackett, Jaclyn</au><au>Antaki, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>6</volume><issue>3</issue><spage>230</spage><epage>241</epage><pages>230-241</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>Rotodynamic blood pumps (also known as
rotary
or
continuous flow
blood pumps) are commonly evaluated
in vitro
under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative (
Φ
˙
), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ–
Φ
˙
plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26577357</pmid><doi>10.1007/s13239-015-0231-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-408X |
ispartof | Cardiovascular engineering and technology, 2015-09, Vol.6 (3), p.230-241 |
issn | 1869-408X 1869-4098 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735330569 |
source | MEDLINE; SpringerLink Journals |
subjects | Biomedical Engineering and Bioengineering Biomedicine Blood Flow Velocity Cardiology Centrifugation - instrumentation Engineering Equipment Design Heart Rate Heart-Assist Devices Hemodynamics Hydrodynamics Models, Cardiovascular Rheology Ventricular Function |
title | Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Unsteady%20Flow%20Patterns%20in%20a%20Rotodynamic%20Blood%20Pump:%20Introduction%20of%20Non-Dimensional%20Regime%20Map&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Shu,%20Fangjun&rft.date=2015-09-01&rft.volume=6&rft.issue=3&rft.spage=230&rft.epage=241&rft.pages=230-241&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-015-0231-0&rft_dat=%3Cproquest_cross%3E1735330569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735330569&rft_id=info:pmid/26577357&rfr_iscdi=true |