SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics

Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2015-02, Vol.11 (2), p.723-739
Hauptverfasser: Darré, Leonardo, Machado, Matías Rodrigo, Brandner, Astrid Febe, González, Humberto Carlos, Ferreira, Sebastián, Pantano, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 2
container_start_page 723
container_title Journal of chemical theory and computation
container_volume 11
creator Darré, Leonardo
Machado, Matías Rodrigo
Brandner, Astrid Febe
González, Humberto Carlos
Ferreira, Sebastián
Pantano, Sergio
description Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.
doi_str_mv 10.1021/ct5007746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735330141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMobk4f_AKSF0EfqkmTtotvZewfDJTNPZc0vZ0dXTKTVBl-eTs29-TTvZf743DOQeiWkidKQvqsfERIkvD4DHVpxEUg4jA-P-2030FXzq0JYYyH7BJ1wjhKIk6SLvpZTOfp5AWneOFto3xjZV3v8FLnlXRQ4IGR1kEwtrLS7TkyVgEeVVAXuDQWv1njodIOf1f-A6efDZjG4YWpv6SvjMZSF3hm9CqYS70CPKxBeWucb7_KXaOLUtYObo6zh5aj4ftgEsxex9NBOgsko5EPBLAyp4IUNEwU56QkolB9iIliAEIWIudKliBpCEzRvAiF5ISyPdIXfUhYDz0cdLfWtA6dzzaVU1DXUu_tZjRhEWOEctqijwdUtS6dhTLb2moj7S6jJNt3nZ26btm7o2yTb6A4kX_ltsD9AZDKZWvTWN2m_EfoF278hgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330141</pqid></control><display><type>article</type><title>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</title><source>MEDLINE</source><source>American Chemical Society (ACS) Journals</source><creator>Darré, Leonardo ; Machado, Matías Rodrigo ; Brandner, Astrid Febe ; González, Humberto Carlos ; Ferreira, Sebastián ; Pantano, Sergio</creator><creatorcontrib>Darré, Leonardo ; Machado, Matías Rodrigo ; Brandner, Astrid Febe ; González, Humberto Carlos ; Ferreira, Sebastián ; Pantano, Sergio</creatorcontrib><description>Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct5007746</identifier><identifier>PMID: 26575407</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Models, Molecular ; Osmolar Concentration ; Protein Conformation ; Proteins - chemistry ; Solubility ; Static Electricity ; Temperature ; Water - chemistry</subject><ispartof>Journal of chemical theory and computation, 2015-02, Vol.11 (2), p.723-739</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</citedby><cites>FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct5007746$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct5007746$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26575407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darré, Leonardo</creatorcontrib><creatorcontrib>Machado, Matías Rodrigo</creatorcontrib><creatorcontrib>Brandner, Astrid Febe</creatorcontrib><creatorcontrib>González, Humberto Carlos</creatorcontrib><creatorcontrib>Ferreira, Sebastián</creatorcontrib><creatorcontrib>Pantano, Sergio</creatorcontrib><title>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.</description><subject>Models, Molecular</subject><subject>Osmolar Concentration</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Solubility</subject><subject>Static Electricity</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkF9LwzAUxYMobk4f_AKSF0EfqkmTtotvZewfDJTNPZc0vZ0dXTKTVBl-eTs29-TTvZf743DOQeiWkidKQvqsfERIkvD4DHVpxEUg4jA-P-2030FXzq0JYYyH7BJ1wjhKIk6SLvpZTOfp5AWneOFto3xjZV3v8FLnlXRQ4IGR1kEwtrLS7TkyVgEeVVAXuDQWv1njodIOf1f-A6efDZjG4YWpv6SvjMZSF3hm9CqYS70CPKxBeWucb7_KXaOLUtYObo6zh5aj4ftgEsxex9NBOgsko5EPBLAyp4IUNEwU56QkolB9iIliAEIWIudKliBpCEzRvAiF5ISyPdIXfUhYDz0cdLfWtA6dzzaVU1DXUu_tZjRhEWOEctqijwdUtS6dhTLb2moj7S6jJNt3nZ26btm7o2yTb6A4kX_ltsD9AZDKZWvTWN2m_EfoF278hgo</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Darré, Leonardo</creator><creator>Machado, Matías Rodrigo</creator><creator>Brandner, Astrid Febe</creator><creator>González, Humberto Carlos</creator><creator>Ferreira, Sebastián</creator><creator>Pantano, Sergio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150210</creationdate><title>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</title><author>Darré, Leonardo ; Machado, Matías Rodrigo ; Brandner, Astrid Febe ; González, Humberto Carlos ; Ferreira, Sebastián ; Pantano, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Models, Molecular</topic><topic>Osmolar Concentration</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Solubility</topic><topic>Static Electricity</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darré, Leonardo</creatorcontrib><creatorcontrib>Machado, Matías Rodrigo</creatorcontrib><creatorcontrib>Brandner, Astrid Febe</creatorcontrib><creatorcontrib>González, Humberto Carlos</creatorcontrib><creatorcontrib>Ferreira, Sebastián</creatorcontrib><creatorcontrib>Pantano, Sergio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darré, Leonardo</au><au>Machado, Matías Rodrigo</au><au>Brandner, Astrid Febe</au><au>González, Humberto Carlos</au><au>Ferreira, Sebastián</au><au>Pantano, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-02-10</date><risdate>2015</risdate><volume>11</volume><issue>2</issue><spage>723</spage><epage>739</epage><pages>723-739</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26575407</pmid><doi>10.1021/ct5007746</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-02, Vol.11 (2), p.723-739
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1735330141
source MEDLINE; American Chemical Society (ACS) Journals
subjects Models, Molecular
Osmolar Concentration
Protein Conformation
Proteins - chemistry
Solubility
Static Electricity
Temperature
Water - chemistry
title SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRAH:%20A%20Structurally%20Unbiased%20Coarse-Grained%20Force%20Field%20for%20Proteins%20with%20Aqueous%20Solvation%20and%20Long-Range%20Electrostatics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Darre%CC%81,%20Leonardo&rft.date=2015-02-10&rft.volume=11&rft.issue=2&rft.spage=723&rft.epage=739&rft.pages=723-739&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct5007746&rft_dat=%3Cproquest_cross%3E1735330141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735330141&rft_id=info:pmid/26575407&rfr_iscdi=true