SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics
Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2015-02, Vol.11 (2), p.723-739 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 2 |
container_start_page | 723 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Darré, Leonardo Machado, Matías Rodrigo Brandner, Astrid Febe González, Humberto Carlos Ferreira, Sebastián Pantano, Sergio |
description | Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes. |
doi_str_mv | 10.1021/ct5007746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735330141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMobk4f_AKSF0EfqkmTtotvZewfDJTNPZc0vZ0dXTKTVBl-eTs29-TTvZf743DOQeiWkidKQvqsfERIkvD4DHVpxEUg4jA-P-2030FXzq0JYYyH7BJ1wjhKIk6SLvpZTOfp5AWneOFto3xjZV3v8FLnlXRQ4IGR1kEwtrLS7TkyVgEeVVAXuDQWv1njodIOf1f-A6efDZjG4YWpv6SvjMZSF3hm9CqYS70CPKxBeWucb7_KXaOLUtYObo6zh5aj4ftgEsxex9NBOgsko5EPBLAyp4IUNEwU56QkolB9iIliAEIWIudKliBpCEzRvAiF5ISyPdIXfUhYDz0cdLfWtA6dzzaVU1DXUu_tZjRhEWOEctqijwdUtS6dhTLb2moj7S6jJNt3nZ26btm7o2yTb6A4kX_ltsD9AZDKZWvTWN2m_EfoF278hgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330141</pqid></control><display><type>article</type><title>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</title><source>MEDLINE</source><source>American Chemical Society (ACS) Journals</source><creator>Darré, Leonardo ; Machado, Matías Rodrigo ; Brandner, Astrid Febe ; González, Humberto Carlos ; Ferreira, Sebastián ; Pantano, Sergio</creator><creatorcontrib>Darré, Leonardo ; Machado, Matías Rodrigo ; Brandner, Astrid Febe ; González, Humberto Carlos ; Ferreira, Sebastián ; Pantano, Sergio</creatorcontrib><description>Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct5007746</identifier><identifier>PMID: 26575407</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Models, Molecular ; Osmolar Concentration ; Protein Conformation ; Proteins - chemistry ; Solubility ; Static Electricity ; Temperature ; Water - chemistry</subject><ispartof>Journal of chemical theory and computation, 2015-02, Vol.11 (2), p.723-739</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</citedby><cites>FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct5007746$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct5007746$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26575407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darré, Leonardo</creatorcontrib><creatorcontrib>Machado, Matías Rodrigo</creatorcontrib><creatorcontrib>Brandner, Astrid Febe</creatorcontrib><creatorcontrib>González, Humberto Carlos</creatorcontrib><creatorcontrib>Ferreira, Sebastián</creatorcontrib><creatorcontrib>Pantano, Sergio</creatorcontrib><title>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.</description><subject>Models, Molecular</subject><subject>Osmolar Concentration</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Solubility</subject><subject>Static Electricity</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkF9LwzAUxYMobk4f_AKSF0EfqkmTtotvZewfDJTNPZc0vZ0dXTKTVBl-eTs29-TTvZf743DOQeiWkidKQvqsfERIkvD4DHVpxEUg4jA-P-2030FXzq0JYYyH7BJ1wjhKIk6SLvpZTOfp5AWneOFto3xjZV3v8FLnlXRQ4IGR1kEwtrLS7TkyVgEeVVAXuDQWv1njodIOf1f-A6efDZjG4YWpv6SvjMZSF3hm9CqYS70CPKxBeWucb7_KXaOLUtYObo6zh5aj4ftgEsxex9NBOgsko5EPBLAyp4IUNEwU56QkolB9iIliAEIWIudKliBpCEzRvAiF5ISyPdIXfUhYDz0cdLfWtA6dzzaVU1DXUu_tZjRhEWOEctqijwdUtS6dhTLb2moj7S6jJNt3nZ26btm7o2yTb6A4kX_ltsD9AZDKZWvTWN2m_EfoF278hgo</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Darré, Leonardo</creator><creator>Machado, Matías Rodrigo</creator><creator>Brandner, Astrid Febe</creator><creator>González, Humberto Carlos</creator><creator>Ferreira, Sebastián</creator><creator>Pantano, Sergio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150210</creationdate><title>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</title><author>Darré, Leonardo ; Machado, Matías Rodrigo ; Brandner, Astrid Febe ; González, Humberto Carlos ; Ferreira, Sebastián ; Pantano, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-9e3fb190d127c440f09dc8e60c3ee9ad9b4cafea12e3c1bd29a4013c8e6898e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Models, Molecular</topic><topic>Osmolar Concentration</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Solubility</topic><topic>Static Electricity</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darré, Leonardo</creatorcontrib><creatorcontrib>Machado, Matías Rodrigo</creatorcontrib><creatorcontrib>Brandner, Astrid Febe</creatorcontrib><creatorcontrib>González, Humberto Carlos</creatorcontrib><creatorcontrib>Ferreira, Sebastián</creatorcontrib><creatorcontrib>Pantano, Sergio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darré, Leonardo</au><au>Machado, Matías Rodrigo</au><au>Brandner, Astrid Febe</au><au>González, Humberto Carlos</au><au>Ferreira, Sebastián</au><au>Pantano, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-02-10</date><risdate>2015</risdate><volume>11</volume><issue>2</issue><spage>723</spage><epage>739</epage><pages>723-739</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein–protein complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26575407</pmid><doi>10.1021/ct5007746</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-02, Vol.11 (2), p.723-739 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735330141 |
source | MEDLINE; American Chemical Society (ACS) Journals |
subjects | Models, Molecular Osmolar Concentration Protein Conformation Proteins - chemistry Solubility Static Electricity Temperature Water - chemistry |
title | SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRAH:%20A%20Structurally%20Unbiased%20Coarse-Grained%20Force%20Field%20for%20Proteins%20with%20Aqueous%20Solvation%20and%20Long-Range%20Electrostatics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Darre%CC%81,%20Leonardo&rft.date=2015-02-10&rft.volume=11&rft.issue=2&rft.spage=723&rft.epage=739&rft.pages=723-739&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct5007746&rft_dat=%3Cproquest_cross%3E1735330141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735330141&rft_id=info:pmid/26575407&rfr_iscdi=true |