Bottom-Up Coarse-Graining of Peptide Ensembles and Helix–Coil Transitions
This work investigates the capability of bottom-up methods for parametrizing minimal coarse-grained (CG) models of disordered and helical peptides. We consider four high-resolution peptide ensembles that demonstrate varying degrees of complexity. For each high-resolution ensemble, we parametrize a C...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2015-03, Vol.11 (3), p.1278-1291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work investigates the capability of bottom-up methods for parametrizing minimal coarse-grained (CG) models of disordered and helical peptides. We consider four high-resolution peptide ensembles that demonstrate varying degrees of complexity. For each high-resolution ensemble, we parametrize a CG model via the multiscale coarse-graining (MS-CG) method, which employs a generalized Yvon–Born–Green (g-YBG) relation to determine potentials directly (i.e., without iteration) from the high-resolution ensemble. The MS-CG method accurately describes high-resolution models that fluctuate about a single conformation. However, given the minimal resolution and simple molecular mechanics potential, the MS-CG method provides a less accurate description for a high-resolution peptide model that samples a disordered ensemble with multiple distinct conformations. We employ an iterative g-YBG method to develop a CG model that more accurately describes the relevant distribution functions and free energy surfaces for this disordered ensemble. Nevertheless, this more accurate model does not reproduce the cooperative helix–coil transition that is sampled by the high resolution model. By comparing the different models, we demonstrate that the errors in the MS-CG model primarily stem from the lack of cooperative interactions afforded by the minimal representation and molecular mechanics potential. This work demonstrates the potential of the MS-CG method for accurately modeling complex biomolecular structures, but also highlights the importance of more complex potentials for modeling cooperative transitions with a minimal CG representation. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/ct5009922 |