How Fast Should an Animal Run When Escaping? An Optimality Model Based on the Trade-Off Between Speed and Accuracy

How fast should animals move when trying to survive? Although many studies have examined how fast animals can move, the fastest speed is not always best. For example, an individual escaping from a predator must run fast enough to escape, but not so fast that it slips and falls. To explore this idea,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2015-12, Vol.55 (6), p.1166-1175
Hauptverfasser: Wheatley, Rebecca, Angilletta, Michael J., Niehaus, Amanda C., Wilson, Robbie S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1175
container_issue 6
container_start_page 1166
container_title Integrative and comparative biology
container_volume 55
creator Wheatley, Rebecca
Angilletta, Michael J.
Niehaus, Amanda C.
Wilson, Robbie S.
description How fast should animals move when trying to survive? Although many studies have examined how fast animals can move, the fastest speed is not always best. For example, an individual escaping from a predator must run fast enough to escape, but not so fast that it slips and falls. To explore this idea, we developed a simple mathematical model that predicts the optimal speed for an individual running from a predator along a straight beam. A beam was used as a proxy for straight-line running with severe consequences for missteps. We assumed that success, defined as reaching the end of the beam, had two broad requirements: (1) running fast enough to escape a predator, and (2) minimizing the probability of making a mistake that would compromise speed. Our model can be tailored to different systems by revising the predator’s maximal speed, the prey’s stride length and motor coordination, and the dimensions of the beam. Our model predicts that animals should run slower when the beam is narrower or when coordination is worse.
doi_str_mv 10.1093/icb/icv091
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735326175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26369935</jstor_id><sourcerecordid>26369935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-8a544d49bf81ae76b1d294203a6befc1f6baaf9ff21bae87162df16bd256c4c3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMofqxevCsBLyJU89Gm7Ul2xVVBWdAFjyVNJm6XblOTVtn_3pRVEQ_DDLzfPIZ5CB1TcklJzq8qVYb6IDndQvs0SdIoJYxvD3NMwiz4HjrwfklIEAndRXtMsCTOUr6P3L39xFPpO_yysH2tsWzwuKlWssbPfYNfF9DgW69kWzVv10HBs7Yb1Kpb4yerocYT6UFj2-BuAXjupIZoZgyeQPcJYfmlBRhcNR4r1Tup1odox8jaw9F3H6H59HZ-cx89zu4ebsaPkeIp76JMJnGs47w0GZWQipJqlseMcClKMIoaUUppcmMYLSVkKRVMGypKzRKhYsVH6Hxj2zr73oPvilXlFdS1bMD2vqApTzgTNE0CevYPXdreNeG4gcrijORCBOpiQylnvXdgitaFV7h1QUkxBFGEIIpNEAE-_bbsyxXoX_Tn8wE42QBL31n3R-ciz8NlX0WejQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738480966</pqid></control><display><type>article</type><title>How Fast Should an Animal Run When Escaping? An Optimality Model Based on the Trade-Off Between Speed and Accuracy</title><source>MEDLINE</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Wheatley, Rebecca ; Angilletta, Michael J. ; Niehaus, Amanda C. ; Wilson, Robbie S.</creator><creatorcontrib>Wheatley, Rebecca ; Angilletta, Michael J. ; Niehaus, Amanda C. ; Wilson, Robbie S.</creatorcontrib><description>How fast should animals move when trying to survive? Although many studies have examined how fast animals can move, the fastest speed is not always best. For example, an individual escaping from a predator must run fast enough to escape, but not so fast that it slips and falls. To explore this idea, we developed a simple mathematical model that predicts the optimal speed for an individual running from a predator along a straight beam. A beam was used as a proxy for straight-line running with severe consequences for missteps. We assumed that success, defined as reaching the end of the beam, had two broad requirements: (1) running fast enough to escape a predator, and (2) minimizing the probability of making a mistake that would compromise speed. Our model can be tailored to different systems by revising the predator’s maximal speed, the prey’s stride length and motor coordination, and the dimensions of the beam. Our model predicts that animals should run slower when the beam is narrower or when coordination is worse.</description><identifier>ISSN: 1540-7063</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/icv091</identifier><identifier>PMID: 26254873</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Accuracy ; Animals ; Biomechanical Phenomena ; Coordination ; Escape Reaction - physiology ; Ion beams ; Mathematical models ; Models, Biological ; Motor ability ; Running ; Towards a General Framework for Predicting Animal Movement Speeds in Nature ; Velocity</subject><ispartof>Integrative and comparative biology, 2015-12, Vol.55 (6), p.1166-1175</ispartof><rights>The Author 2015</rights><rights>The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.</rights><rights>Copyright Oxford Publishing Limited(England) Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-8a544d49bf81ae76b1d294203a6befc1f6baaf9ff21bae87162df16bd256c4c3</citedby><cites>FETCH-LOGICAL-c373t-8a544d49bf81ae76b1d294203a6befc1f6baaf9ff21bae87162df16bd256c4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26369935$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26369935$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26254873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wheatley, Rebecca</creatorcontrib><creatorcontrib>Angilletta, Michael J.</creatorcontrib><creatorcontrib>Niehaus, Amanda C.</creatorcontrib><creatorcontrib>Wilson, Robbie S.</creatorcontrib><title>How Fast Should an Animal Run When Escaping? An Optimality Model Based on the Trade-Off Between Speed and Accuracy</title><title>Integrative and comparative biology</title><addtitle>Integr Comp Biol</addtitle><description>How fast should animals move when trying to survive? Although many studies have examined how fast animals can move, the fastest speed is not always best. For example, an individual escaping from a predator must run fast enough to escape, but not so fast that it slips and falls. To explore this idea, we developed a simple mathematical model that predicts the optimal speed for an individual running from a predator along a straight beam. A beam was used as a proxy for straight-line running with severe consequences for missteps. We assumed that success, defined as reaching the end of the beam, had two broad requirements: (1) running fast enough to escape a predator, and (2) minimizing the probability of making a mistake that would compromise speed. Our model can be tailored to different systems by revising the predator’s maximal speed, the prey’s stride length and motor coordination, and the dimensions of the beam. Our model predicts that animals should run slower when the beam is narrower or when coordination is worse.</description><subject>Accuracy</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Coordination</subject><subject>Escape Reaction - physiology</subject><subject>Ion beams</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Motor ability</subject><subject>Running</subject><subject>Towards a General Framework for Predicting Animal Movement Speeds in Nature</subject><subject>Velocity</subject><issn>1540-7063</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMofqxevCsBLyJU89Gm7Ul2xVVBWdAFjyVNJm6XblOTVtn_3pRVEQ_DDLzfPIZ5CB1TcklJzq8qVYb6IDndQvs0SdIoJYxvD3NMwiz4HjrwfklIEAndRXtMsCTOUr6P3L39xFPpO_yysH2tsWzwuKlWssbPfYNfF9DgW69kWzVv10HBs7Yb1Kpb4yerocYT6UFj2-BuAXjupIZoZgyeQPcJYfmlBRhcNR4r1Tup1odox8jaw9F3H6H59HZ-cx89zu4ebsaPkeIp76JMJnGs47w0GZWQipJqlseMcClKMIoaUUppcmMYLSVkKRVMGypKzRKhYsVH6Hxj2zr73oPvilXlFdS1bMD2vqApTzgTNE0CevYPXdreNeG4gcrijORCBOpiQylnvXdgitaFV7h1QUkxBFGEIIpNEAE-_bbsyxXoX_Tn8wE42QBL31n3R-ciz8NlX0WejQM</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wheatley, Rebecca</creator><creator>Angilletta, Michael J.</creator><creator>Niehaus, Amanda C.</creator><creator>Wilson, Robbie S.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>How Fast Should an Animal Run When Escaping? An Optimality Model Based on the Trade-Off Between Speed and Accuracy</title><author>Wheatley, Rebecca ; Angilletta, Michael J. ; Niehaus, Amanda C. ; Wilson, Robbie S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-8a544d49bf81ae76b1d294203a6befc1f6baaf9ff21bae87162df16bd256c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Coordination</topic><topic>Escape Reaction - physiology</topic><topic>Ion beams</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Motor ability</topic><topic>Running</topic><topic>Towards a General Framework for Predicting Animal Movement Speeds in Nature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wheatley, Rebecca</creatorcontrib><creatorcontrib>Angilletta, Michael J.</creatorcontrib><creatorcontrib>Niehaus, Amanda C.</creatorcontrib><creatorcontrib>Wilson, Robbie S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative and comparative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wheatley, Rebecca</au><au>Angilletta, Michael J.</au><au>Niehaus, Amanda C.</au><au>Wilson, Robbie S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Fast Should an Animal Run When Escaping? An Optimality Model Based on the Trade-Off Between Speed and Accuracy</atitle><jtitle>Integrative and comparative biology</jtitle><addtitle>Integr Comp Biol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>55</volume><issue>6</issue><spage>1166</spage><epage>1175</epage><pages>1166-1175</pages><issn>1540-7063</issn><eissn>1557-7023</eissn><abstract>How fast should animals move when trying to survive? Although many studies have examined how fast animals can move, the fastest speed is not always best. For example, an individual escaping from a predator must run fast enough to escape, but not so fast that it slips and falls. To explore this idea, we developed a simple mathematical model that predicts the optimal speed for an individual running from a predator along a straight beam. A beam was used as a proxy for straight-line running with severe consequences for missteps. We assumed that success, defined as reaching the end of the beam, had two broad requirements: (1) running fast enough to escape a predator, and (2) minimizing the probability of making a mistake that would compromise speed. Our model can be tailored to different systems by revising the predator’s maximal speed, the prey’s stride length and motor coordination, and the dimensions of the beam. Our model predicts that animals should run slower when the beam is narrower or when coordination is worse.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26254873</pmid><doi>10.1093/icb/icv091</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-7063
ispartof Integrative and comparative biology, 2015-12, Vol.55 (6), p.1166-1175
issn 1540-7063
1557-7023
language eng
recordid cdi_proquest_miscellaneous_1735326175
source MEDLINE; Oxford Journals Online; Alma/SFX Local Collection; JSTOR; EZB Electronic Journals Library
subjects Accuracy
Animals
Biomechanical Phenomena
Coordination
Escape Reaction - physiology
Ion beams
Mathematical models
Models, Biological
Motor ability
Running
Towards a General Framework for Predicting Animal Movement Speeds in Nature
Velocity
title How Fast Should an Animal Run When Escaping? An Optimality Model Based on the Trade-Off Between Speed and Accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Fast%20Should%20an%20Animal%20Run%20When%20Escaping?%20An%20Optimality%20Model%20Based%20on%20the%20Trade-Off%20Between%20Speed%20and%20Accuracy&rft.jtitle=Integrative%20and%20comparative%20biology&rft.au=Wheatley,%20Rebecca&rft.date=2015-12-01&rft.volume=55&rft.issue=6&rft.spage=1166&rft.epage=1175&rft.pages=1166-1175&rft.issn=1540-7063&rft.eissn=1557-7023&rft_id=info:doi/10.1093/icb/icv091&rft_dat=%3Cjstor_proqu%3E26369935%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738480966&rft_id=info:pmid/26254873&rft_jstor_id=26369935&rfr_iscdi=true