Competitive ability of two Brassica varieties in relation to biomass allocation and morphological plasticity under varying nutrient availability

Green cabbage (Brassica campestris, leafy variety) and turnip (Brassica campestris var. rapifera, rooty variety) were grown in both monocultures and mixtures at three nutrient levels to investigate their responses to nutrient availability with respect to biomass allocation, morphological plasticity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological research 1999-09, Vol.14 (3), p.255-266
Hauptverfasser: Li, Bo, Suzuki, Jun‐Ichirou, Hara, Toshihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Green cabbage (Brassica campestris, leafy variety) and turnip (Brassica campestris var. rapifera, rooty variety) were grown in both monocultures and mixtures at three nutrient levels to investigate their responses to nutrient availability with respect to biomass allocation, morphological plasticity and competitive ability. Their allocation parameters and leaf morphological traits were affected by both nutrient availability and developmental stage. Both of the varieties had a smaller biomass allocation to leaf blades, but a greater allocation to petioles at high nutrient levels. Root:shoot ratio (RSR) of green cabbage decreased with increasing nutrient availability, whereas that of turnip increased. Turnip had a smaller leaf blade weight ratio (LBWR) than cabbage, being compensated for by larger leaf area ratio (LAR) and specific leaf area (SLA). Leaf area ratio and SLA of both the varieties increased with increasing nutrient availability as did their mean dry weights. The mean dry weight of turnip was slightly greater than that of green cabbage in their respective monocultures, while that of green cabbage was greater than that of turnip in their 1:1 mixture. Therefore, green cabbage, having inherently greater biomass allocation to leaves, was generally more competitive than turnip with more biomass allocation to roots, especially at higher nutrient levels. However, within a variety, morphological plasticity (variation in LAR and SLA) was more important than the plasticity in biomass allocation (e.g. variation in RSR and LBWR) in determining competitive ability. The implication of our results is that competition models based on biomass allocation pattern alone may fail to predict competitive outcomes and that such models should also take morphological plasticity into full account.
ISSN:0912-3814
1440-1703
DOI:10.1046/j.1440-1703.1999.143298.x