Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase

Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2015-04, Vol.11 (4), p.1470-1480
Hauptverfasser: Viciano, Ignacio, González-Navarrete, Patricio, Andrés, Juan, Martí, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 4
container_start_page 1470
container_title Journal of chemical theory and computation
container_volume 11
creator Viciano, Ignacio
González-Navarrete, Patricio
Andrés, Juan
Martí, Sergio
description Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.
doi_str_mv 10.1021/ct501030q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1734281379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1734281379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</originalsourceid><addsrcrecordid>eNptkc1OwzAQhC0E4v_ACyBfkOBQsOM4aY6lKhREBEjtOfLPhgQ1NthOpb4Fj4yhpSdOO1p9O9LOIHRGyTUlCb1RgRNKGPncQYeUp8WgyJJsd6vp8AAdef9OCGNpwvbRQZLxPGV8eIi-Hm1rAp57wLbGt9bo1rzhydIu-tBag2cNWLfCwmj8Wt6UJZ6upGs1LiE0VuPaOjw3GpwPYn0aGoiMdvYNDB5JH5xQv04lqEaY1nd42Qo8XgWrGmc7wC8pJ3gUpQjCwwnaq8XCw-lmHqP53WQ2ng6enu8fxqOngWCchIFitc4lp0AzVhAApmiuqExTxQSXMikSnTCpeJqnBWNSRxqyTCrQcatBsGN0ufb9cPazBx-qrvUKFgthwPa-onnMakhZXkT0ao0qZ713UFcfru2EW1WUVD8FVNsCInu-se1lB3pL_iUegYs1IJSv3m3vTPzyH6NvtVKOXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734281379</pqid></control><display><type>article</type><title>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</title><source>ACS Publications</source><source>MEDLINE</source><creator>Viciano, Ignacio ; González-Navarrete, Patricio ; Andrés, Juan ; Martí, Sergio</creator><creatorcontrib>Viciano, Ignacio ; González-Navarrete, Patricio ; Andrés, Juan ; Martí, Sergio</creatorcontrib><description>Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct501030q</identifier><identifier>PMID: 26574358</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aromatase - chemistry ; Aromatase - metabolism ; Hydrogen - chemistry ; Models, Molecular ; Quantum Theory ; Static Electricity ; Substrate Specificity ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1470-1480</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</citedby><cites>FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct501030q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct501030q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26574358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viciano, Ignacio</creatorcontrib><creatorcontrib>González-Navarrete, Patricio</creatorcontrib><creatorcontrib>Andrés, Juan</creatorcontrib><creatorcontrib>Martí, Sergio</creatorcontrib><title>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.</description><subject>Aromatase - chemistry</subject><subject>Aromatase - metabolism</subject><subject>Hydrogen - chemistry</subject><subject>Models, Molecular</subject><subject>Quantum Theory</subject><subject>Static Electricity</subject><subject>Substrate Specificity</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1OwzAQhC0E4v_ACyBfkOBQsOM4aY6lKhREBEjtOfLPhgQ1NthOpb4Fj4yhpSdOO1p9O9LOIHRGyTUlCb1RgRNKGPncQYeUp8WgyJJsd6vp8AAdef9OCGNpwvbRQZLxPGV8eIi-Hm1rAp57wLbGt9bo1rzhydIu-tBag2cNWLfCwmj8Wt6UJZ6upGs1LiE0VuPaOjw3GpwPYn0aGoiMdvYNDB5JH5xQv04lqEaY1nd42Qo8XgWrGmc7wC8pJ3gUpQjCwwnaq8XCw-lmHqP53WQ2ng6enu8fxqOngWCchIFitc4lp0AzVhAApmiuqExTxQSXMikSnTCpeJqnBWNSRxqyTCrQcatBsGN0ufb9cPazBx-qrvUKFgthwPa-onnMakhZXkT0ao0qZ713UFcfru2EW1WUVD8FVNsCInu-se1lB3pL_iUegYs1IJSv3m3vTPzyH6NvtVKOXg</recordid><startdate>20150414</startdate><enddate>20150414</enddate><creator>Viciano, Ignacio</creator><creator>González-Navarrete, Patricio</creator><creator>Andrés, Juan</creator><creator>Martí, Sergio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150414</creationdate><title>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</title><author>Viciano, Ignacio ; González-Navarrete, Patricio ; Andrés, Juan ; Martí, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aromatase - chemistry</topic><topic>Aromatase - metabolism</topic><topic>Hydrogen - chemistry</topic><topic>Models, Molecular</topic><topic>Quantum Theory</topic><topic>Static Electricity</topic><topic>Substrate Specificity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viciano, Ignacio</creatorcontrib><creatorcontrib>González-Navarrete, Patricio</creatorcontrib><creatorcontrib>Andrés, Juan</creatorcontrib><creatorcontrib>Martí, Sergio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viciano, Ignacio</au><au>González-Navarrete, Patricio</au><au>Andrés, Juan</au><au>Martí, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-04-14</date><risdate>2015</risdate><volume>11</volume><issue>4</issue><spage>1470</spage><epage>1480</epage><pages>1470-1480</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26574358</pmid><doi>10.1021/ct501030q</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1470-1480
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1734281379
source ACS Publications; MEDLINE
subjects Aromatase - chemistry
Aromatase - metabolism
Hydrogen - chemistry
Models, Molecular
Quantum Theory
Static Electricity
Substrate Specificity
Thermodynamics
title Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Use%20of%20Bonding%20Evolution%20Theory%20and%20QM/MM%20Hybrid%20Method%20for%20Understanding%20the%20Hydrogen%20Abstraction%20Mechanism%20via%20Cytochrome%20P450%20Aromatase&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Viciano,%20Ignacio&rft.date=2015-04-14&rft.volume=11&rft.issue=4&rft.spage=1470&rft.epage=1480&rft.pages=1470-1480&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct501030q&rft_dat=%3Cproquest_cross%3E1734281379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734281379&rft_id=info:pmid/26574358&rfr_iscdi=true