Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase
Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming process...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2015-04, Vol.11 (4), p.1470-1480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1480 |
---|---|
container_issue | 4 |
container_start_page | 1470 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Viciano, Ignacio González-Navarrete, Patricio Andrés, Juan Martí, Sergio |
description | Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way. |
doi_str_mv | 10.1021/ct501030q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1734281379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1734281379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</originalsourceid><addsrcrecordid>eNptkc1OwzAQhC0E4v_ACyBfkOBQsOM4aY6lKhREBEjtOfLPhgQ1NthOpb4Fj4yhpSdOO1p9O9LOIHRGyTUlCb1RgRNKGPncQYeUp8WgyJJsd6vp8AAdef9OCGNpwvbRQZLxPGV8eIi-Hm1rAp57wLbGt9bo1rzhydIu-tBag2cNWLfCwmj8Wt6UJZ6upGs1LiE0VuPaOjw3GpwPYn0aGoiMdvYNDB5JH5xQv04lqEaY1nd42Qo8XgWrGmc7wC8pJ3gUpQjCwwnaq8XCw-lmHqP53WQ2ng6enu8fxqOngWCchIFitc4lp0AzVhAApmiuqExTxQSXMikSnTCpeJqnBWNSRxqyTCrQcatBsGN0ufb9cPazBx-qrvUKFgthwPa-onnMakhZXkT0ao0qZ713UFcfru2EW1WUVD8FVNsCInu-se1lB3pL_iUegYs1IJSv3m3vTPzyH6NvtVKOXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734281379</pqid></control><display><type>article</type><title>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</title><source>ACS Publications</source><source>MEDLINE</source><creator>Viciano, Ignacio ; González-Navarrete, Patricio ; Andrés, Juan ; Martí, Sergio</creator><creatorcontrib>Viciano, Ignacio ; González-Navarrete, Patricio ; Andrés, Juan ; Martí, Sergio</creatorcontrib><description>Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct501030q</identifier><identifier>PMID: 26574358</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aromatase - chemistry ; Aromatase - metabolism ; Hydrogen - chemistry ; Models, Molecular ; Quantum Theory ; Static Electricity ; Substrate Specificity ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1470-1480</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</citedby><cites>FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct501030q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct501030q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26574358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viciano, Ignacio</creatorcontrib><creatorcontrib>González-Navarrete, Patricio</creatorcontrib><creatorcontrib>Andrés, Juan</creatorcontrib><creatorcontrib>Martí, Sergio</creatorcontrib><title>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.</description><subject>Aromatase - chemistry</subject><subject>Aromatase - metabolism</subject><subject>Hydrogen - chemistry</subject><subject>Models, Molecular</subject><subject>Quantum Theory</subject><subject>Static Electricity</subject><subject>Substrate Specificity</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1OwzAQhC0E4v_ACyBfkOBQsOM4aY6lKhREBEjtOfLPhgQ1NthOpb4Fj4yhpSdOO1p9O9LOIHRGyTUlCb1RgRNKGPncQYeUp8WgyJJsd6vp8AAdef9OCGNpwvbRQZLxPGV8eIi-Hm1rAp57wLbGt9bo1rzhydIu-tBag2cNWLfCwmj8Wt6UJZ6upGs1LiE0VuPaOjw3GpwPYn0aGoiMdvYNDB5JH5xQv04lqEaY1nd42Qo8XgWrGmc7wC8pJ3gUpQjCwwnaq8XCw-lmHqP53WQ2ng6enu8fxqOngWCchIFitc4lp0AzVhAApmiuqExTxQSXMikSnTCpeJqnBWNSRxqyTCrQcatBsGN0ufb9cPazBx-qrvUKFgthwPa-onnMakhZXkT0ao0qZ713UFcfru2EW1WUVD8FVNsCInu-se1lB3pL_iUegYs1IJSv3m3vTPzyH6NvtVKOXg</recordid><startdate>20150414</startdate><enddate>20150414</enddate><creator>Viciano, Ignacio</creator><creator>González-Navarrete, Patricio</creator><creator>Andrés, Juan</creator><creator>Martí, Sergio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150414</creationdate><title>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</title><author>Viciano, Ignacio ; González-Navarrete, Patricio ; Andrés, Juan ; Martí, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-c3fd7b51e16390ee3c17c1b44c3a5bb292d23bc5474933bdfd7e66bced3bcdea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aromatase - chemistry</topic><topic>Aromatase - metabolism</topic><topic>Hydrogen - chemistry</topic><topic>Models, Molecular</topic><topic>Quantum Theory</topic><topic>Static Electricity</topic><topic>Substrate Specificity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viciano, Ignacio</creatorcontrib><creatorcontrib>González-Navarrete, Patricio</creatorcontrib><creatorcontrib>Andrés, Juan</creatorcontrib><creatorcontrib>Martí, Sergio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viciano, Ignacio</au><au>González-Navarrete, Patricio</au><au>Andrés, Juan</au><au>Martí, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-04-14</date><risdate>2015</risdate><volume>11</volume><issue>4</issue><spage>1470</spage><epage>1480</epage><pages>1470-1480</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Bonding evolution theory (BET), as a combination of the electron localization function (ELF) and Thom’s catastrophe theory (CT), has been coupled with quantum mechanics/molecular mechanics (QM/MM) method in order to study biochemical reaction paths. The evolution of the bond breaking/forming processes and electron pair rearrangements in an inhomogeneous dynamic environment provided by the enzyme has been elucidated. The proposed methodology is applied in an enzymatic system in order to clarify the reaction mechanism for the hydrogen abstraction of the androstenedione (ASD) substrate catalyzed by the cytochrome P450 aromatase enzyme. The use of a QM/MM Hamiltonian allows inclusion of the polarization of the charges derived from the amino acid residues in the wave function, providing a more accurate and realistic description of the chemical process. The hydrogen abstraction step is found to have five different ELF structural stability domains, whereas the C–H breaking and O–H forming bond process rearrangements are taking place in an asynchronous way.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26574358</pmid><doi>10.1021/ct501030q</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1470-1480 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1734281379 |
source | ACS Publications; MEDLINE |
subjects | Aromatase - chemistry Aromatase - metabolism Hydrogen - chemistry Models, Molecular Quantum Theory Static Electricity Substrate Specificity Thermodynamics |
title | Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Use%20of%20Bonding%20Evolution%20Theory%20and%20QM/MM%20Hybrid%20Method%20for%20Understanding%20the%20Hydrogen%20Abstraction%20Mechanism%20via%20Cytochrome%20P450%20Aromatase&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Viciano,%20Ignacio&rft.date=2015-04-14&rft.volume=11&rft.issue=4&rft.spage=1470&rft.epage=1480&rft.pages=1470-1480&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct501030q&rft_dat=%3Cproquest_cross%3E1734281379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734281379&rft_id=info:pmid/26574358&rfr_iscdi=true |