Self-assembled drug delivery systems. Part 8: In vitro/in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine

[Display omitted] A lipid derivative of gemcitabine (Gem), cholesteryl-phosphonyl gemcitabine (CPNG) was synthesized in this study. The amphiphilicity of CPNG was confirmed using a Langmuir monolayer method. Nanoassemblies were formed when the mixture of CPNG and a long-circulating material, CHS-PEG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2015-01, Vol.478 (1), p.124-130
Hauptverfasser: Li, Miao, Qi, Shuo, Jin, Yiguang, Dong, Junxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 1
container_start_page 124
container_title International journal of pharmaceutics
container_volume 478
creator Li, Miao
Qi, Shuo
Jin, Yiguang
Dong, Junxing
description [Display omitted] A lipid derivative of gemcitabine (Gem), cholesteryl-phosphonyl gemcitabine (CPNG) was synthesized in this study. The amphiphilicity of CPNG was confirmed using a Langmuir monolayer method. Nanoassemblies were formed when the mixture of CPNG and a long-circulating material, CHS-PEG1500 (9:1, mol/mol) were injected into water. The nanoassemblies could be spherical vesicles according to the transmission electron microscopic images. Their mean size was 71.1nm and the zeta potential was −17.6mV. CPNG maintained stable in the weakly acidic and neutral environments although mouse plasma quickly degraded CPNG. The cytotoxicity of the nanoassemblies was 3–6 folds of Gem's cytotoxicity on five human cancer cell lines including 95C, 95D, A549, SW620, PANC-1 probably because of the phosphonyl substitution and amphiphilicity of CPNG. CPNG mainly distributed into the mononuclear macrophage system (including liver and spleen) after bolus intravenous administration of the nanoassemblies into mice though the expected significant long-circulating effect was not shown. The nanoassemblies with the high dose of CPNG showed the statistically higher in vivo anticancer effect than Gem. This study indicates that the N-substituted lipid derivative of Gem and the true long-circulating function are necessary for preparing a successful nanoassembly of Gem.
doi_str_mv 10.1016/j.ijpharm.2014.11.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1734281349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037851731400845X</els_id><sourcerecordid>1734281349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-325a0aa9a055ef2628439ed5388019d61708c37eeef61a65b649cca8f73af1073</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERbeFnwDykUtSO7ZjhwtCFf2QKhUJOFtee9L1yokXO1kpV345Xm3gymE0o9E778w8CL2npKaEtjf72u8PO5OGuiGU15TWhLFXaEOVZBXjsn2NNoRJVQkq2SW6ynlPCGkbyt6gy0ZwroTkG_T7O4S-MjnDsA3gsEvzC3YQ_BHSgvOSJxhyjb-ZNGH1CT-O-OinFG_8qThGnKfZecg49njaAR7NGFeztWt3MUBxSUuoDruYS4xLwC8wWD-ZrR_hLbroTcjwbs3X6Ofd1x-3D9XT8_3j7ZenyrJWTBVrhCHGdIYIAX3TNoqzDpxgShHauZZKoiyTANC31LRi2_LOWqN6yUxPiWTX6OPZ95Dir7ncpAefLYRgRohz1oUTbxRlvCtScZbaFHNO0OtD8oNJi6ZEn_DrvV7x6xN-Taku-Mvch3XFvB3A_Zv6y7sIPp8FUB49ekg6Ww-jBecT2Em76P-z4g_vsZsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734281349</pqid></control><display><type>article</type><title>Self-assembled drug delivery systems. Part 8: In vitro/in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Miao ; Qi, Shuo ; Jin, Yiguang ; Dong, Junxing</creator><creatorcontrib>Li, Miao ; Qi, Shuo ; Jin, Yiguang ; Dong, Junxing</creatorcontrib><description>[Display omitted] A lipid derivative of gemcitabine (Gem), cholesteryl-phosphonyl gemcitabine (CPNG) was synthesized in this study. The amphiphilicity of CPNG was confirmed using a Langmuir monolayer method. Nanoassemblies were formed when the mixture of CPNG and a long-circulating material, CHS-PEG1500 (9:1, mol/mol) were injected into water. The nanoassemblies could be spherical vesicles according to the transmission electron microscopic images. Their mean size was 71.1nm and the zeta potential was −17.6mV. CPNG maintained stable in the weakly acidic and neutral environments although mouse plasma quickly degraded CPNG. The cytotoxicity of the nanoassemblies was 3–6 folds of Gem's cytotoxicity on five human cancer cell lines including 95C, 95D, A549, SW620, PANC-1 probably because of the phosphonyl substitution and amphiphilicity of CPNG. CPNG mainly distributed into the mononuclear macrophage system (including liver and spleen) after bolus intravenous administration of the nanoassemblies into mice though the expected significant long-circulating effect was not shown. The nanoassemblies with the high dose of CPNG showed the statistically higher in vivo anticancer effect than Gem. This study indicates that the N-substituted lipid derivative of Gem and the true long-circulating function are necessary for preparing a successful nanoassembly of Gem.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2014.11.033</identifier><identifier>PMID: 25448574</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject><![CDATA[Animals ; Antimetabolites, Antineoplastic - administration & dosage ; Antimetabolites, Antineoplastic - chemistry ; Antimetabolites, Antineoplastic - pharmacokinetics ; Antimetabolites, Antineoplastic - therapeutic use ; Cell Line, Tumor ; Cell Survival - drug effects ; Cholesterol - administration & dosage ; Cholesterol - analogs & derivatives ; Cholesterol - chemistry ; Cholesterol - pharmacokinetics ; Cholesterol - therapeutic use ; Deoxycytidine - administration & dosage ; Deoxycytidine - analogs & derivatives ; Deoxycytidine - chemistry ; Deoxycytidine - pharmacokinetics ; Deoxycytidine - therapeutic use ; Drug Delivery Systems ; Gemcitabine ; Humans ; Mice ; Molecular self-assembly ; Nanoassemblies ; Nanostructures - administration & dosage ; Nanostructures - chemistry ; Nanostructures - therapeutic use ; Neoplasms - drug therapy ; Neoplasms - pathology ; Phosphonate ; Prodrug ; Tumor Burden - drug effects]]></subject><ispartof>International journal of pharmaceutics, 2015-01, Vol.478 (1), p.124-130</ispartof><rights>2014</rights><rights>Copyright © 2014. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-325a0aa9a055ef2628439ed5388019d61708c37eeef61a65b649cca8f73af1073</citedby><cites>FETCH-LOGICAL-c365t-325a0aa9a055ef2628439ed5388019d61708c37eeef61a65b649cca8f73af1073</cites><orcidid>0000-0002-3528-1397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2014.11.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25448574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Qi, Shuo</creatorcontrib><creatorcontrib>Jin, Yiguang</creatorcontrib><creatorcontrib>Dong, Junxing</creatorcontrib><title>Self-assembled drug delivery systems. Part 8: In vitro/in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] A lipid derivative of gemcitabine (Gem), cholesteryl-phosphonyl gemcitabine (CPNG) was synthesized in this study. The amphiphilicity of CPNG was confirmed using a Langmuir monolayer method. Nanoassemblies were formed when the mixture of CPNG and a long-circulating material, CHS-PEG1500 (9:1, mol/mol) were injected into water. The nanoassemblies could be spherical vesicles according to the transmission electron microscopic images. Their mean size was 71.1nm and the zeta potential was −17.6mV. CPNG maintained stable in the weakly acidic and neutral environments although mouse plasma quickly degraded CPNG. The cytotoxicity of the nanoassemblies was 3–6 folds of Gem's cytotoxicity on five human cancer cell lines including 95C, 95D, A549, SW620, PANC-1 probably because of the phosphonyl substitution and amphiphilicity of CPNG. CPNG mainly distributed into the mononuclear macrophage system (including liver and spleen) after bolus intravenous administration of the nanoassemblies into mice though the expected significant long-circulating effect was not shown. The nanoassemblies with the high dose of CPNG showed the statistically higher in vivo anticancer effect than Gem. This study indicates that the N-substituted lipid derivative of Gem and the true long-circulating function are necessary for preparing a successful nanoassembly of Gem.</description><subject>Animals</subject><subject>Antimetabolites, Antineoplastic - administration &amp; dosage</subject><subject>Antimetabolites, Antineoplastic - chemistry</subject><subject>Antimetabolites, Antineoplastic - pharmacokinetics</subject><subject>Antimetabolites, Antineoplastic - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cholesterol - administration &amp; dosage</subject><subject>Cholesterol - analogs &amp; derivatives</subject><subject>Cholesterol - chemistry</subject><subject>Cholesterol - pharmacokinetics</subject><subject>Cholesterol - therapeutic use</subject><subject>Deoxycytidine - administration &amp; dosage</subject><subject>Deoxycytidine - analogs &amp; derivatives</subject><subject>Deoxycytidine - chemistry</subject><subject>Deoxycytidine - pharmacokinetics</subject><subject>Deoxycytidine - therapeutic use</subject><subject>Drug Delivery Systems</subject><subject>Gemcitabine</subject><subject>Humans</subject><subject>Mice</subject><subject>Molecular self-assembly</subject><subject>Nanoassemblies</subject><subject>Nanostructures - administration &amp; dosage</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - therapeutic use</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Phosphonate</subject><subject>Prodrug</subject><subject>Tumor Burden - drug effects</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERbeFnwDykUtSO7ZjhwtCFf2QKhUJOFtee9L1yokXO1kpV345Xm3gymE0o9E778w8CL2npKaEtjf72u8PO5OGuiGU15TWhLFXaEOVZBXjsn2NNoRJVQkq2SW6ynlPCGkbyt6gy0ZwroTkG_T7O4S-MjnDsA3gsEvzC3YQ_BHSgvOSJxhyjb-ZNGH1CT-O-OinFG_8qThGnKfZecg49njaAR7NGFeztWt3MUBxSUuoDruYS4xLwC8wWD-ZrR_hLbroTcjwbs3X6Ofd1x-3D9XT8_3j7ZenyrJWTBVrhCHGdIYIAX3TNoqzDpxgShHauZZKoiyTANC31LRi2_LOWqN6yUxPiWTX6OPZ95Dir7ncpAefLYRgRohz1oUTbxRlvCtScZbaFHNO0OtD8oNJi6ZEn_DrvV7x6xN-Taku-Mvch3XFvB3A_Zv6y7sIPp8FUB49ekg6Ww-jBecT2Em76P-z4g_vsZsh</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Li, Miao</creator><creator>Qi, Shuo</creator><creator>Jin, Yiguang</creator><creator>Dong, Junxing</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3528-1397</orcidid></search><sort><creationdate>20150115</creationdate><title>Self-assembled drug delivery systems. Part 8: In vitro/in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine</title><author>Li, Miao ; Qi, Shuo ; Jin, Yiguang ; Dong, Junxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-325a0aa9a055ef2628439ed5388019d61708c37eeef61a65b649cca8f73af1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antimetabolites, Antineoplastic - administration &amp; dosage</topic><topic>Antimetabolites, Antineoplastic - chemistry</topic><topic>Antimetabolites, Antineoplastic - pharmacokinetics</topic><topic>Antimetabolites, Antineoplastic - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cholesterol - administration &amp; dosage</topic><topic>Cholesterol - analogs &amp; derivatives</topic><topic>Cholesterol - chemistry</topic><topic>Cholesterol - pharmacokinetics</topic><topic>Cholesterol - therapeutic use</topic><topic>Deoxycytidine - administration &amp; dosage</topic><topic>Deoxycytidine - analogs &amp; derivatives</topic><topic>Deoxycytidine - chemistry</topic><topic>Deoxycytidine - pharmacokinetics</topic><topic>Deoxycytidine - therapeutic use</topic><topic>Drug Delivery Systems</topic><topic>Gemcitabine</topic><topic>Humans</topic><topic>Mice</topic><topic>Molecular self-assembly</topic><topic>Nanoassemblies</topic><topic>Nanostructures - administration &amp; dosage</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - therapeutic use</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Phosphonate</topic><topic>Prodrug</topic><topic>Tumor Burden - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Qi, Shuo</creatorcontrib><creatorcontrib>Jin, Yiguang</creatorcontrib><creatorcontrib>Dong, Junxing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Miao</au><au>Qi, Shuo</au><au>Jin, Yiguang</au><au>Dong, Junxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembled drug delivery systems. Part 8: In vitro/in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2015-01-15</date><risdate>2015</risdate><volume>478</volume><issue>1</issue><spage>124</spage><epage>130</epage><pages>124-130</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] A lipid derivative of gemcitabine (Gem), cholesteryl-phosphonyl gemcitabine (CPNG) was synthesized in this study. The amphiphilicity of CPNG was confirmed using a Langmuir monolayer method. Nanoassemblies were formed when the mixture of CPNG and a long-circulating material, CHS-PEG1500 (9:1, mol/mol) were injected into water. The nanoassemblies could be spherical vesicles according to the transmission electron microscopic images. Their mean size was 71.1nm and the zeta potential was −17.6mV. CPNG maintained stable in the weakly acidic and neutral environments although mouse plasma quickly degraded CPNG. The cytotoxicity of the nanoassemblies was 3–6 folds of Gem's cytotoxicity on five human cancer cell lines including 95C, 95D, A549, SW620, PANC-1 probably because of the phosphonyl substitution and amphiphilicity of CPNG. CPNG mainly distributed into the mononuclear macrophage system (including liver and spleen) after bolus intravenous administration of the nanoassemblies into mice though the expected significant long-circulating effect was not shown. The nanoassemblies with the high dose of CPNG showed the statistically higher in vivo anticancer effect than Gem. This study indicates that the N-substituted lipid derivative of Gem and the true long-circulating function are necessary for preparing a successful nanoassembly of Gem.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25448574</pmid><doi>10.1016/j.ijpharm.2014.11.033</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3528-1397</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2015-01, Vol.478 (1), p.124-130
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_1734281349
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Antimetabolites, Antineoplastic - administration & dosage
Antimetabolites, Antineoplastic - chemistry
Antimetabolites, Antineoplastic - pharmacokinetics
Antimetabolites, Antineoplastic - therapeutic use
Cell Line, Tumor
Cell Survival - drug effects
Cholesterol - administration & dosage
Cholesterol - analogs & derivatives
Cholesterol - chemistry
Cholesterol - pharmacokinetics
Cholesterol - therapeutic use
Deoxycytidine - administration & dosage
Deoxycytidine - analogs & derivatives
Deoxycytidine - chemistry
Deoxycytidine - pharmacokinetics
Deoxycytidine - therapeutic use
Drug Delivery Systems
Gemcitabine
Humans
Mice
Molecular self-assembly
Nanoassemblies
Nanostructures - administration & dosage
Nanostructures - chemistry
Nanostructures - therapeutic use
Neoplasms - drug therapy
Neoplasms - pathology
Phosphonate
Prodrug
Tumor Burden - drug effects
title Self-assembled drug delivery systems. Part 8: In vitro/in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembled%20drug%20delivery%20systems.%20Part%208:%20In%20vitro/in%20vivo%20studies%20of%20the%20nanoassemblies%20of%20cholesteryl-phosphonyl%20gemcitabine&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Li,%20Miao&rft.date=2015-01-15&rft.volume=478&rft.issue=1&rft.spage=124&rft.epage=130&rft.pages=124-130&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2014.11.033&rft_dat=%3Cproquest_cross%3E1734281349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734281349&rft_id=info:pmid/25448574&rft_els_id=S037851731400845X&rfr_iscdi=true