Benchmark of Schemes for Multiscale Molecular Dynamics Simulations

In multiscale molecular dynamics simulations the accuracy of detailed models is combined with the efficiency of a reduced representation. For several applications  namely those of sampling enhancement  it is desirable to combine fine-grained (FG) and coarse-grained (CG) approaches into a single hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2015-04, Vol.11 (4), p.1389-1398
Hauptverfasser: Goga, N, Melo, M. N, Rzepiela, A. J, de Vries, A. H, Hadar, A, Marrink, S. J, Berendsen, H. J. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 4
container_start_page 1389
container_title Journal of chemical theory and computation
container_volume 11
creator Goga, N
Melo, M. N
Rzepiela, A. J
de Vries, A. H
Hadar, A
Marrink, S. J
Berendsen, H. J. C
description In multiscale molecular dynamics simulations the accuracy of detailed models is combined with the efficiency of a reduced representation. For several applications  namely those of sampling enhancement  it is desirable to combine fine-grained (FG) and coarse-grained (CG) approaches into a single hybrid approach with an adjustable mixing parameter. We present a benchmark of three algorithms that use a mixing of the two representation layers using a Lagrangian formalism. The three algorithms use three different approaches for keeping the particles at the FG level of representation together: 1) addition of forces, 2) mass scaling, and 3) temperature scaling. The benchmark is applied to liquid hexadecane and includes an evaluation of the average configurational entropy of the FG and CG subsystems. The temperature-scaling scheme achieved a 3-fold sampling speedup with little deviation of FG properties. The addition-of-forces scheme kept FG properties the best but provided little sampling speedup. The mass-scaling scheme yielded a 5-fold speedup but deviated the most from FG properties.
doi_str_mv 10.1021/ct501102b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1734280134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1734280134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-bc79d1cd059c67055ced3fe4e080f21a5c44f2fa74976bf80c036c3eef9d9a333</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EoqVw4A8gX5DgELBjO48jLU-pFYfCOXI2azUliYudHPrvMWrpidOOVp9GM0PIJWd3nMX8HnrFeFDlERlzJfMoT-Lk-KB5NiJn3q8ZE0LG4pSM4kSlUig-JtMpdrBqtfui1tAlrLBFT411dDE0fe1BN0gXtkEYGu3o47bTbQ2eLus2PPradv6cnBjdeLzY3wn5fH76mL1G8_eXt9nDPNJCsT4qIc0rDhVTOSQpUwqwEgYlsoyZmGsFUprY6FTmaVKajAETCQhEk1e5FkJMyM3Od-Ps94C-L9qQD5tGd2gHX_A0tMsYFzKgtzsUnPXeoSk2rg4ltwVnxe9kxWGywF7tbYeyxepA_m0UgOsdoMEXazu4LrT8x-gHjvtyJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734280134</pqid></control><display><type>article</type><title>Benchmark of Schemes for Multiscale Molecular Dynamics Simulations</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Goga, N ; Melo, M. N ; Rzepiela, A. J ; de Vries, A. H ; Hadar, A ; Marrink, S. J ; Berendsen, H. J. C</creator><creatorcontrib>Goga, N ; Melo, M. N ; Rzepiela, A. J ; de Vries, A. H ; Hadar, A ; Marrink, S. J ; Berendsen, H. J. C</creatorcontrib><description>In multiscale molecular dynamics simulations the accuracy of detailed models is combined with the efficiency of a reduced representation. For several applications  namely those of sampling enhancement  it is desirable to combine fine-grained (FG) and coarse-grained (CG) approaches into a single hybrid approach with an adjustable mixing parameter. We present a benchmark of three algorithms that use a mixing of the two representation layers using a Lagrangian formalism. The three algorithms use three different approaches for keeping the particles at the FG level of representation together: 1) addition of forces, 2) mass scaling, and 3) temperature scaling. The benchmark is applied to liquid hexadecane and includes an evaluation of the average configurational entropy of the FG and CG subsystems. The temperature-scaling scheme achieved a 3-fold sampling speedup with little deviation of FG properties. The addition-of-forces scheme kept FG properties the best but provided little sampling speedup. The mass-scaling scheme yielded a 5-fold speedup but deviated the most from FG properties.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct501102b</identifier><identifier>PMID: 26574351</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Alkanes - chemistry ; Entropy ; Molecular Dynamics Simulation ; Temperature</subject><ispartof>Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1389-1398</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-bc79d1cd059c67055ced3fe4e080f21a5c44f2fa74976bf80c036c3eef9d9a333</citedby><cites>FETCH-LOGICAL-a350t-bc79d1cd059c67055ced3fe4e080f21a5c44f2fa74976bf80c036c3eef9d9a333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct501102b$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct501102b$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26574351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goga, N</creatorcontrib><creatorcontrib>Melo, M. N</creatorcontrib><creatorcontrib>Rzepiela, A. J</creatorcontrib><creatorcontrib>de Vries, A. H</creatorcontrib><creatorcontrib>Hadar, A</creatorcontrib><creatorcontrib>Marrink, S. J</creatorcontrib><creatorcontrib>Berendsen, H. J. C</creatorcontrib><title>Benchmark of Schemes for Multiscale Molecular Dynamics Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In multiscale molecular dynamics simulations the accuracy of detailed models is combined with the efficiency of a reduced representation. For several applications  namely those of sampling enhancement  it is desirable to combine fine-grained (FG) and coarse-grained (CG) approaches into a single hybrid approach with an adjustable mixing parameter. We present a benchmark of three algorithms that use a mixing of the two representation layers using a Lagrangian formalism. The three algorithms use three different approaches for keeping the particles at the FG level of representation together: 1) addition of forces, 2) mass scaling, and 3) temperature scaling. The benchmark is applied to liquid hexadecane and includes an evaluation of the average configurational entropy of the FG and CG subsystems. The temperature-scaling scheme achieved a 3-fold sampling speedup with little deviation of FG properties. The addition-of-forces scheme kept FG properties the best but provided little sampling speedup. The mass-scaling scheme yielded a 5-fold speedup but deviated the most from FG properties.</description><subject>Algorithms</subject><subject>Alkanes - chemistry</subject><subject>Entropy</subject><subject>Molecular Dynamics Simulation</subject><subject>Temperature</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkEtPwzAQhC0EoqVw4A8gX5DgELBjO48jLU-pFYfCOXI2azUliYudHPrvMWrpidOOVp9GM0PIJWd3nMX8HnrFeFDlERlzJfMoT-Lk-KB5NiJn3q8ZE0LG4pSM4kSlUig-JtMpdrBqtfui1tAlrLBFT411dDE0fe1BN0gXtkEYGu3o47bTbQ2eLus2PPradv6cnBjdeLzY3wn5fH76mL1G8_eXt9nDPNJCsT4qIc0rDhVTOSQpUwqwEgYlsoyZmGsFUprY6FTmaVKajAETCQhEk1e5FkJMyM3Od-Ps94C-L9qQD5tGd2gHX_A0tMsYFzKgtzsUnPXeoSk2rg4ltwVnxe9kxWGywF7tbYeyxepA_m0UgOsdoMEXazu4LrT8x-gHjvtyJQ</recordid><startdate>20150414</startdate><enddate>20150414</enddate><creator>Goga, N</creator><creator>Melo, M. N</creator><creator>Rzepiela, A. J</creator><creator>de Vries, A. H</creator><creator>Hadar, A</creator><creator>Marrink, S. J</creator><creator>Berendsen, H. J. C</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150414</creationdate><title>Benchmark of Schemes for Multiscale Molecular Dynamics Simulations</title><author>Goga, N ; Melo, M. N ; Rzepiela, A. J ; de Vries, A. H ; Hadar, A ; Marrink, S. J ; Berendsen, H. J. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-bc79d1cd059c67055ced3fe4e080f21a5c44f2fa74976bf80c036c3eef9d9a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Alkanes - chemistry</topic><topic>Entropy</topic><topic>Molecular Dynamics Simulation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goga, N</creatorcontrib><creatorcontrib>Melo, M. N</creatorcontrib><creatorcontrib>Rzepiela, A. J</creatorcontrib><creatorcontrib>de Vries, A. H</creatorcontrib><creatorcontrib>Hadar, A</creatorcontrib><creatorcontrib>Marrink, S. J</creatorcontrib><creatorcontrib>Berendsen, H. J. C</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goga, N</au><au>Melo, M. N</au><au>Rzepiela, A. J</au><au>de Vries, A. H</au><au>Hadar, A</au><au>Marrink, S. J</au><au>Berendsen, H. J. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark of Schemes for Multiscale Molecular Dynamics Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-04-14</date><risdate>2015</risdate><volume>11</volume><issue>4</issue><spage>1389</spage><epage>1398</epage><pages>1389-1398</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In multiscale molecular dynamics simulations the accuracy of detailed models is combined with the efficiency of a reduced representation. For several applications  namely those of sampling enhancement  it is desirable to combine fine-grained (FG) and coarse-grained (CG) approaches into a single hybrid approach with an adjustable mixing parameter. We present a benchmark of three algorithms that use a mixing of the two representation layers using a Lagrangian formalism. The three algorithms use three different approaches for keeping the particles at the FG level of representation together: 1) addition of forces, 2) mass scaling, and 3) temperature scaling. The benchmark is applied to liquid hexadecane and includes an evaluation of the average configurational entropy of the FG and CG subsystems. The temperature-scaling scheme achieved a 3-fold sampling speedup with little deviation of FG properties. The addition-of-forces scheme kept FG properties the best but provided little sampling speedup. The mass-scaling scheme yielded a 5-fold speedup but deviated the most from FG properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26574351</pmid><doi>10.1021/ct501102b</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1389-1398
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1734280134
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Alkanes - chemistry
Entropy
Molecular Dynamics Simulation
Temperature
title Benchmark of Schemes for Multiscale Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20of%20Schemes%20for%20Multiscale%20Molecular%20Dynamics%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Goga,%20N&rft.date=2015-04-14&rft.volume=11&rft.issue=4&rft.spage=1389&rft.epage=1398&rft.pages=1389-1398&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct501102b&rft_dat=%3Cproquest_cross%3E1734280134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734280134&rft_id=info:pmid/26574351&rfr_iscdi=true