A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions

Analyses of plant macrofossils, testate amoebae and humification have been carried out on a 2800-year core from Tore Hill Moss, a raised bog in the Strathspey region of Scotland. All three analyses were carried out at the same 4 cm intervals allowing exact correlation, and the core was dated by nine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quaternary science reviews 2005-05, Vol.24 (10), p.1261-1277
Hauptverfasser: Blundell, Antony, Barber, Keith
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analyses of plant macrofossils, testate amoebae and humification have been carried out on a 2800-year core from Tore Hill Moss, a raised bog in the Strathspey region of Scotland. All three analyses were carried out at the same 4 cm intervals allowing exact correlation, and the core was dated by nine Accelerator mass spectrometry radiocarbon dates and the Glen Garry tephra layer. The results have been combined and compared to present a bog surface wetness (BSW) record within which the limitations of each proxy method can be assessed and this has highlighted the advantages of a combined rather than a single proxy approach. Significant wet shifts are recorded at ca cal. 560 BC, 60 BC, AD 430, AD 570, AD 700, AD 1090 and AD 1640. Significant shifts to drier periods are also suggested ca cal. AD 220, AD 500 and AD 820. Some of the recorded shifts and phases are related to phases of wetter and drier climate such as the Sub-boreal/Sub-atlantic transition, the Dark Age deterioration and the Romano-British Warm Period. The Dark Ages are notable as a period of rapid peat accumulation and frequent water table fluctuations. Time-series analysis revealed a significant wet-shift cycle of 560 years from the testate amoebae data.
ISSN:0277-3791
1873-457X
DOI:10.1016/j.quascirev.2004.08.017