Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations
Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FA...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2015-11, Vol.116 (11), p.2676-2694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2694 |
---|---|
container_issue | 11 |
container_start_page | 2676 |
container_title | Journal of cellular biochemistry |
container_volume | 116 |
creator | Sangeetha, Manoharan Deepa, Perinkulam Ravi Rishi, Pukhraj Khetan, Vikas Krishnakumar, Subramanian |
description | Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jcb.25217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732834479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1732834479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</originalsourceid><addsrcrecordid>eNqNkU1PFTEUhhujkQu68A-YJm5kMdDPaesOR7lqAA1oXDad3jM4194ptjNB_r2VubAwIXHV5OR5n9OTF6EXlBxQQtjh2rcHTDKqHqEFJUZVohbiMVoQxUnFOGU7aDfnNSHEGM6eoh0mjdRG0wW6XobYuoCXMAB-Bwkup-DGPg4Z9wM-Pro4wxd9gMHDCp_D2A-xDS6PceNw48o04QZCyG_waQzgSzZhN6xwE_qh97H64sYfMcTL3pcdTUwJtvZn6EnnQobn23cPfTt-_7X5UJ18Xn5sjk4qLyRTldedkUR1pia1oFJTA63uOLRlbFwN0jNulGiFlq2Qppa1NlxzKcqd3Ejge-j17L1K8dcEebSbPvvyZTdAnLKlijPNhVDmP1BKJa-NIgV99Q-6jlMayiGWSSWprvmt8EGquAg3dF67P1M-xZwTdPYq9RuXbiwl9m-9ttRrb-st7MutcWo3sLon7_oswOEMXJfSbh422U_N2ztlNSf6PMLv-4RLP22tuJL2-9nSyoar03POrOB_AKtgue8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710391479</pqid></control><display><type>article</type><title>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sangeetha, Manoharan ; Deepa, Perinkulam Ravi ; Rishi, Pukhraj ; Khetan, Vikas ; Krishnakumar, Subramanian</creator><creatorcontrib>Sangeetha, Manoharan ; Deepa, Perinkulam Ravi ; Rishi, Pukhraj ; Khetan, Vikas ; Krishnakumar, Subramanian</creatorcontrib><description>Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.25217</identifier><identifier>PMID: 25958981</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; APOPTOSIS ; Cancer ; Cell cycle ; Cell signaling ; Cell Survival ; Cell viability ; Child ; Child, Preschool ; DE NOVO LIPOGENESIS ; Deregulation ; DNA microarrays ; FATTY ACID SYNTHASE ; Fatty Acid Synthase, Type I - genetics ; Fatty Acid Synthase, Type I - metabolism ; Fatty acids ; Female ; G protein-coupled receptors ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; GENE SILENCING ; Genes ; Humans ; Infant ; Lipid metabolism ; Lipids ; Lipogenesis ; Male ; MAP kinase ; Metabolism ; Oligonucleotide Array Sequence Analysis ; Pediatrics ; Phosphorylation ; Proteins ; Retina ; Retinal Neoplasms - genetics ; Retinal Neoplasms - metabolism ; Retinal Neoplasms - pathology ; RETINOBLASTOMA ; Retinoblastoma - genetics ; Retinoblastoma - metabolism ; Retinoblastoma - pathology ; Retinoid X receptor α ; Signal Transduction ; Signaling ; siRNA ; Survival ; Tumors</subject><ispartof>Journal of cellular biochemistry, 2015-11, Vol.116 (11), p.2676-2694</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</citedby><cites>FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.25217$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.25217$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25958981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangeetha, Manoharan</creatorcontrib><creatorcontrib>Deepa, Perinkulam Ravi</creatorcontrib><creatorcontrib>Rishi, Pukhraj</creatorcontrib><creatorcontrib>Khetan, Vikas</creatorcontrib><creatorcontrib>Krishnakumar, Subramanian</creatorcontrib><title>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>APOPTOSIS</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell signaling</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DE NOVO LIPOGENESIS</subject><subject>Deregulation</subject><subject>DNA microarrays</subject><subject>FATTY ACID SYNTHASE</subject><subject>Fatty Acid Synthase, Type I - genetics</subject><subject>Fatty Acid Synthase, Type I - metabolism</subject><subject>Fatty acids</subject><subject>Female</subject><subject>G protein-coupled receptors</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Knockdown Techniques</subject><subject>GENE SILENCING</subject><subject>Genes</subject><subject>Humans</subject><subject>Infant</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pediatrics</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retinal Neoplasms - genetics</subject><subject>Retinal Neoplasms - metabolism</subject><subject>Retinal Neoplasms - pathology</subject><subject>RETINOBLASTOMA</subject><subject>Retinoblastoma - genetics</subject><subject>Retinoblastoma - metabolism</subject><subject>Retinoblastoma - pathology</subject><subject>Retinoid X receptor α</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Survival</subject><subject>Tumors</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1PFTEUhhujkQu68A-YJm5kMdDPaesOR7lqAA1oXDad3jM4194ptjNB_r2VubAwIXHV5OR5n9OTF6EXlBxQQtjh2rcHTDKqHqEFJUZVohbiMVoQxUnFOGU7aDfnNSHEGM6eoh0mjdRG0wW6XobYuoCXMAB-Bwkup-DGPg4Z9wM-Pro4wxd9gMHDCp_D2A-xDS6PceNw48o04QZCyG_waQzgSzZhN6xwE_qh97H64sYfMcTL3pcdTUwJtvZn6EnnQobn23cPfTt-_7X5UJ18Xn5sjk4qLyRTldedkUR1pia1oFJTA63uOLRlbFwN0jNulGiFlq2Qppa1NlxzKcqd3Ejge-j17L1K8dcEebSbPvvyZTdAnLKlijPNhVDmP1BKJa-NIgV99Q-6jlMayiGWSSWprvmt8EGquAg3dF67P1M-xZwTdPYq9RuXbiwl9m-9ttRrb-st7MutcWo3sLon7_oswOEMXJfSbh422U_N2ztlNSf6PMLv-4RLP22tuJL2-9nSyoar03POrOB_AKtgue8</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Sangeetha, Manoharan</creator><creator>Deepa, Perinkulam Ravi</creator><creator>Rishi, Pukhraj</creator><creator>Khetan, Vikas</creator><creator>Krishnakumar, Subramanian</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope></search><sort><creationdate>201511</creationdate><title>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</title><author>Sangeetha, Manoharan ; Deepa, Perinkulam Ravi ; Rishi, Pukhraj ; Khetan, Vikas ; Krishnakumar, Subramanian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>APOPTOSIS</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell signaling</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DE NOVO LIPOGENESIS</topic><topic>Deregulation</topic><topic>DNA microarrays</topic><topic>FATTY ACID SYNTHASE</topic><topic>Fatty Acid Synthase, Type I - genetics</topic><topic>Fatty Acid Synthase, Type I - metabolism</topic><topic>Fatty acids</topic><topic>Female</topic><topic>G protein-coupled receptors</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Knockdown Techniques</topic><topic>GENE SILENCING</topic><topic>Genes</topic><topic>Humans</topic><topic>Infant</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pediatrics</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retinal Neoplasms - genetics</topic><topic>Retinal Neoplasms - metabolism</topic><topic>Retinal Neoplasms - pathology</topic><topic>RETINOBLASTOMA</topic><topic>Retinoblastoma - genetics</topic><topic>Retinoblastoma - metabolism</topic><topic>Retinoblastoma - pathology</topic><topic>Retinoid X receptor α</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangeetha, Manoharan</creatorcontrib><creatorcontrib>Deepa, Perinkulam Ravi</creatorcontrib><creatorcontrib>Rishi, Pukhraj</creatorcontrib><creatorcontrib>Khetan, Vikas</creatorcontrib><creatorcontrib>Krishnakumar, Subramanian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangeetha, Manoharan</au><au>Deepa, Perinkulam Ravi</au><au>Rishi, Pukhraj</au><au>Khetan, Vikas</au><au>Krishnakumar, Subramanian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2015-11</date><risdate>2015</risdate><volume>116</volume><issue>11</issue><spage>2676</spage><epage>2694</epage><pages>2676-2694</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25958981</pmid><doi>10.1002/jcb.25217</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2015-11, Vol.116 (11), p.2676-2694 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1732834479 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein APOPTOSIS Cancer Cell cycle Cell signaling Cell Survival Cell viability Child Child, Preschool DE NOVO LIPOGENESIS Deregulation DNA microarrays FATTY ACID SYNTHASE Fatty Acid Synthase, Type I - genetics Fatty Acid Synthase, Type I - metabolism Fatty acids Female G protein-coupled receptors Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic Gene Knockdown Techniques GENE SILENCING Genes Humans Infant Lipid metabolism Lipids Lipogenesis Male MAP kinase Metabolism Oligonucleotide Array Sequence Analysis Pediatrics Phosphorylation Proteins Retina Retinal Neoplasms - genetics Retinal Neoplasms - metabolism Retinal Neoplasms - pathology RETINOBLASTOMA Retinoblastoma - genetics Retinoblastoma - metabolism Retinoblastoma - pathology Retinoid X receptor α Signal Transduction Signaling siRNA Survival Tumors |
title | Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Gene%20Deregulations%20in%20FASN%20Silenced%20Retinoblastoma%20Cancer%20Cells:%20Molecular%20and%20Clinico-Pathological%20Correlations&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Sangeetha,%20Manoharan&rft.date=2015-11&rft.volume=116&rft.issue=11&rft.spage=2676&rft.epage=2694&rft.pages=2676-2694&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.25217&rft_dat=%3Cproquest_cross%3E1732834479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710391479&rft_id=info:pmid/25958981&rfr_iscdi=true |