Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations

Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2015-11, Vol.116 (11), p.2676-2694
Hauptverfasser: Sangeetha, Manoharan, Deepa, Perinkulam Ravi, Rishi, Pukhraj, Khetan, Vikas, Krishnakumar, Subramanian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2694
container_issue 11
container_start_page 2676
container_title Journal of cellular biochemistry
container_volume 116
creator Sangeetha, Manoharan
Deepa, Perinkulam Ravi
Rishi, Pukhraj
Khetan, Vikas
Krishnakumar, Subramanian
description Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jcb.25217
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732834479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1732834479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</originalsourceid><addsrcrecordid>eNqNkU1PFTEUhhujkQu68A-YJm5kMdDPaesOR7lqAA1oXDad3jM4194ptjNB_r2VubAwIXHV5OR5n9OTF6EXlBxQQtjh2rcHTDKqHqEFJUZVohbiMVoQxUnFOGU7aDfnNSHEGM6eoh0mjdRG0wW6XobYuoCXMAB-Bwkup-DGPg4Z9wM-Pro4wxd9gMHDCp_D2A-xDS6PceNw48o04QZCyG_waQzgSzZhN6xwE_qh97H64sYfMcTL3pcdTUwJtvZn6EnnQobn23cPfTt-_7X5UJ18Xn5sjk4qLyRTldedkUR1pia1oFJTA63uOLRlbFwN0jNulGiFlq2Qppa1NlxzKcqd3Ejge-j17L1K8dcEebSbPvvyZTdAnLKlijPNhVDmP1BKJa-NIgV99Q-6jlMayiGWSSWprvmt8EGquAg3dF67P1M-xZwTdPYq9RuXbiwl9m-9ttRrb-st7MutcWo3sLon7_oswOEMXJfSbh422U_N2ztlNSf6PMLv-4RLP22tuJL2-9nSyoar03POrOB_AKtgue8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710391479</pqid></control><display><type>article</type><title>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sangeetha, Manoharan ; Deepa, Perinkulam Ravi ; Rishi, Pukhraj ; Khetan, Vikas ; Krishnakumar, Subramanian</creator><creatorcontrib>Sangeetha, Manoharan ; Deepa, Perinkulam Ravi ; Rishi, Pukhraj ; Khetan, Vikas ; Krishnakumar, Subramanian</creatorcontrib><description>Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.25217</identifier><identifier>PMID: 25958981</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; APOPTOSIS ; Cancer ; Cell cycle ; Cell signaling ; Cell Survival ; Cell viability ; Child ; Child, Preschool ; DE NOVO LIPOGENESIS ; Deregulation ; DNA microarrays ; FATTY ACID SYNTHASE ; Fatty Acid Synthase, Type I - genetics ; Fatty Acid Synthase, Type I - metabolism ; Fatty acids ; Female ; G protein-coupled receptors ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; GENE SILENCING ; Genes ; Humans ; Infant ; Lipid metabolism ; Lipids ; Lipogenesis ; Male ; MAP kinase ; Metabolism ; Oligonucleotide Array Sequence Analysis ; Pediatrics ; Phosphorylation ; Proteins ; Retina ; Retinal Neoplasms - genetics ; Retinal Neoplasms - metabolism ; Retinal Neoplasms - pathology ; RETINOBLASTOMA ; Retinoblastoma - genetics ; Retinoblastoma - metabolism ; Retinoblastoma - pathology ; Retinoid X receptor α ; Signal Transduction ; Signaling ; siRNA ; Survival ; Tumors</subject><ispartof>Journal of cellular biochemistry, 2015-11, Vol.116 (11), p.2676-2694</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</citedby><cites>FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.25217$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.25217$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25958981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangeetha, Manoharan</creatorcontrib><creatorcontrib>Deepa, Perinkulam Ravi</creatorcontrib><creatorcontrib>Rishi, Pukhraj</creatorcontrib><creatorcontrib>Khetan, Vikas</creatorcontrib><creatorcontrib>Krishnakumar, Subramanian</creatorcontrib><title>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>APOPTOSIS</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell signaling</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DE NOVO LIPOGENESIS</subject><subject>Deregulation</subject><subject>DNA microarrays</subject><subject>FATTY ACID SYNTHASE</subject><subject>Fatty Acid Synthase, Type I - genetics</subject><subject>Fatty Acid Synthase, Type I - metabolism</subject><subject>Fatty acids</subject><subject>Female</subject><subject>G protein-coupled receptors</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Knockdown Techniques</subject><subject>GENE SILENCING</subject><subject>Genes</subject><subject>Humans</subject><subject>Infant</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pediatrics</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retinal Neoplasms - genetics</subject><subject>Retinal Neoplasms - metabolism</subject><subject>Retinal Neoplasms - pathology</subject><subject>RETINOBLASTOMA</subject><subject>Retinoblastoma - genetics</subject><subject>Retinoblastoma - metabolism</subject><subject>Retinoblastoma - pathology</subject><subject>Retinoid X receptor α</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Survival</subject><subject>Tumors</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1PFTEUhhujkQu68A-YJm5kMdDPaesOR7lqAA1oXDad3jM4194ptjNB_r2VubAwIXHV5OR5n9OTF6EXlBxQQtjh2rcHTDKqHqEFJUZVohbiMVoQxUnFOGU7aDfnNSHEGM6eoh0mjdRG0wW6XobYuoCXMAB-Bwkup-DGPg4Z9wM-Pro4wxd9gMHDCp_D2A-xDS6PceNw48o04QZCyG_waQzgSzZhN6xwE_qh97H64sYfMcTL3pcdTUwJtvZn6EnnQobn23cPfTt-_7X5UJ18Xn5sjk4qLyRTldedkUR1pia1oFJTA63uOLRlbFwN0jNulGiFlq2Qppa1NlxzKcqd3Ejge-j17L1K8dcEebSbPvvyZTdAnLKlijPNhVDmP1BKJa-NIgV99Q-6jlMayiGWSSWprvmt8EGquAg3dF67P1M-xZwTdPYq9RuXbiwl9m-9ttRrb-st7MutcWo3sLon7_oswOEMXJfSbh422U_N2ztlNSf6PMLv-4RLP22tuJL2-9nSyoar03POrOB_AKtgue8</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Sangeetha, Manoharan</creator><creator>Deepa, Perinkulam Ravi</creator><creator>Rishi, Pukhraj</creator><creator>Khetan, Vikas</creator><creator>Krishnakumar, Subramanian</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope></search><sort><creationdate>201511</creationdate><title>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</title><author>Sangeetha, Manoharan ; Deepa, Perinkulam Ravi ; Rishi, Pukhraj ; Khetan, Vikas ; Krishnakumar, Subramanian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4527-c8f9507f9606415819eb8f3ebf959a6e5c23974b485b4596568938354932395e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>APOPTOSIS</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell signaling</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DE NOVO LIPOGENESIS</topic><topic>Deregulation</topic><topic>DNA microarrays</topic><topic>FATTY ACID SYNTHASE</topic><topic>Fatty Acid Synthase, Type I - genetics</topic><topic>Fatty Acid Synthase, Type I - metabolism</topic><topic>Fatty acids</topic><topic>Female</topic><topic>G protein-coupled receptors</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Knockdown Techniques</topic><topic>GENE SILENCING</topic><topic>Genes</topic><topic>Humans</topic><topic>Infant</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pediatrics</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retinal Neoplasms - genetics</topic><topic>Retinal Neoplasms - metabolism</topic><topic>Retinal Neoplasms - pathology</topic><topic>RETINOBLASTOMA</topic><topic>Retinoblastoma - genetics</topic><topic>Retinoblastoma - metabolism</topic><topic>Retinoblastoma - pathology</topic><topic>Retinoid X receptor α</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangeetha, Manoharan</creatorcontrib><creatorcontrib>Deepa, Perinkulam Ravi</creatorcontrib><creatorcontrib>Rishi, Pukhraj</creatorcontrib><creatorcontrib>Khetan, Vikas</creatorcontrib><creatorcontrib>Krishnakumar, Subramanian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangeetha, Manoharan</au><au>Deepa, Perinkulam Ravi</au><au>Rishi, Pukhraj</au><au>Khetan, Vikas</au><au>Krishnakumar, Subramanian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2015-11</date><risdate>2015</risdate><volume>116</volume><issue>11</issue><spage>2676</spage><epage>2694</epage><pages>2676-2694</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis‐dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA‐mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF‐beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT‐PCR validation in FASN knockdown RB cells revealed up‐regulation of ANXA1, DAPK2, and down‐regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti‐cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico‐pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy. J. Cell. Biochem. 116: 2676–2694, 2015. © 2015 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25958981</pmid><doi>10.1002/jcb.25217</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2015-11, Vol.116 (11), p.2676-2694
issn 0730-2312
1097-4644
language eng
recordid cdi_proquest_miscellaneous_1732834479
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
APOPTOSIS
Cancer
Cell cycle
Cell signaling
Cell Survival
Cell viability
Child
Child, Preschool
DE NOVO LIPOGENESIS
Deregulation
DNA microarrays
FATTY ACID SYNTHASE
Fatty Acid Synthase, Type I - genetics
Fatty Acid Synthase, Type I - metabolism
Fatty acids
Female
G protein-coupled receptors
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene Knockdown Techniques
GENE SILENCING
Genes
Humans
Infant
Lipid metabolism
Lipids
Lipogenesis
Male
MAP kinase
Metabolism
Oligonucleotide Array Sequence Analysis
Pediatrics
Phosphorylation
Proteins
Retina
Retinal Neoplasms - genetics
Retinal Neoplasms - metabolism
Retinal Neoplasms - pathology
RETINOBLASTOMA
Retinoblastoma - genetics
Retinoblastoma - metabolism
Retinoblastoma - pathology
Retinoid X receptor α
Signal Transduction
Signaling
siRNA
Survival
Tumors
title Global Gene Deregulations in FASN Silenced Retinoblastoma Cancer Cells: Molecular and Clinico-Pathological Correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Gene%20Deregulations%20in%20FASN%20Silenced%20Retinoblastoma%20Cancer%20Cells:%20Molecular%20and%20Clinico-Pathological%20Correlations&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Sangeetha,%20Manoharan&rft.date=2015-11&rft.volume=116&rft.issue=11&rft.spage=2676&rft.epage=2694&rft.pages=2676-2694&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.25217&rft_dat=%3Cproquest_cross%3E1732834479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710391479&rft_id=info:pmid/25958981&rfr_iscdi=true