Estimation of scour around submarine pipelines with Artificial Neural Network
•Scour depth exposed to regular and irregular wave attacks.•Modeling of scour depth in shoaling condition.•Artificial Neural Network models. The process of scour around submarine pipelines laid on mobile beds is complicated due to physical processes arising from the triple interaction of waves/curre...
Gespeichert in:
Veröffentlicht in: | Applied ocean research 2015-06, Vol.51, p.241-251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | |
container_start_page | 241 |
container_title | Applied ocean research |
container_volume | 51 |
creator | Kiziloz, Burak Cevik, Esin Aydoan, Burak |
description | •Scour depth exposed to regular and irregular wave attacks.•Modeling of scour depth in shoaling condition.•Artificial Neural Network models.
The process of scour around submarine pipelines laid on mobile beds is complicated due to physical processes arising from the triple interaction of waves/currents, beds and pipelines. This paper presents Artificial Neural Network (ANN) models for predicting the scour depth beneath submarine pipelines for different storm conditions. The storm conditions are considered for both regular and irregular wave attacks. The developed models use the Feed Forward Back Propagation (FFBP) Artificial Neural Network (ANN) technique. The training, validation and testing data are selected from appropriate experimental data collected in this study. Various estimation models were developed using both deep water wave parameters and local wave parameters. Alternative ANN models with different inputs and neuron numbers were evaluated by determining the best models using a trial and error approach. The estimation results show good agreement with measurements. |
doi_str_mv | 10.1016/j.apor.2015.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732827644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141118715000516</els_id><sourcerecordid>1732827644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-cb833742e2da688e66d812eadc30a75a25915ee26bfc6b84315dee187dd5a68c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzj5yCXBj8RxJS5VVR4SjwucLcfeCJc0DrZDxb_HpZw5zWo132pnELqkpKSEiutNqUcfSkZoXZKqJEQcoRmVzaKgdbU4RjNCK1rQvDlFZzFuCKFMCjlDT-uY3FYn5wfsOxyNnwLWwU-DxXFqtzq4AfDoRujzEPHOpXe8DMl1zjjd42eYwq-knQ8f5-ik032Eiz-do7fb9evqvnh8uXtYLR8LwzlPhWkl503FgFktpAQhrKQMtDWc6KbWrF7QGoCJtjOilRWntQXIz1tbZ8DwObo63B2D_5wgJrV10UDf6wH8FBVtOJOsEVWVrexgNcHHGKBTY8iBw7eiRO27Uxu1707tu1OkUrm7DN0cIMghvhwEFY2DwYB1AUxS1rv_8B-ysnkL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732827644</pqid></control><display><type>article</type><title>Estimation of scour around submarine pipelines with Artificial Neural Network</title><source>Elsevier ScienceDirect Journals</source><creator>Kiziloz, Burak ; Cevik, Esin ; Aydoan, Burak</creator><creatorcontrib>Kiziloz, Burak ; Cevik, Esin ; Aydoan, Burak</creatorcontrib><description>•Scour depth exposed to regular and irregular wave attacks.•Modeling of scour depth in shoaling condition.•Artificial Neural Network models.
The process of scour around submarine pipelines laid on mobile beds is complicated due to physical processes arising from the triple interaction of waves/currents, beds and pipelines. This paper presents Artificial Neural Network (ANN) models for predicting the scour depth beneath submarine pipelines for different storm conditions. The storm conditions are considered for both regular and irregular wave attacks. The developed models use the Feed Forward Back Propagation (FFBP) Artificial Neural Network (ANN) technique. The training, validation and testing data are selected from appropriate experimental data collected in this study. Various estimation models were developed using both deep water wave parameters and local wave parameters. Alternative ANN models with different inputs and neuron numbers were evaluated by determining the best models using a trial and error approach. The estimation results show good agreement with measurements.</description><identifier>ISSN: 0141-1187</identifier><identifier>EISSN: 1879-1549</identifier><identifier>DOI: 10.1016/j.apor.2015.04.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial Neural Network model ; Irregular waves ; Marine ; Regular waves ; Scour depth ; Submarine pipelines</subject><ispartof>Applied ocean research, 2015-06, Vol.51, p.241-251</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-cb833742e2da688e66d812eadc30a75a25915ee26bfc6b84315dee187dd5a68c3</citedby><cites>FETCH-LOGICAL-c333t-cb833742e2da688e66d812eadc30a75a25915ee26bfc6b84315dee187dd5a68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141118715000516$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kiziloz, Burak</creatorcontrib><creatorcontrib>Cevik, Esin</creatorcontrib><creatorcontrib>Aydoan, Burak</creatorcontrib><title>Estimation of scour around submarine pipelines with Artificial Neural Network</title><title>Applied ocean research</title><description>•Scour depth exposed to regular and irregular wave attacks.•Modeling of scour depth in shoaling condition.•Artificial Neural Network models.
The process of scour around submarine pipelines laid on mobile beds is complicated due to physical processes arising from the triple interaction of waves/currents, beds and pipelines. This paper presents Artificial Neural Network (ANN) models for predicting the scour depth beneath submarine pipelines for different storm conditions. The storm conditions are considered for both regular and irregular wave attacks. The developed models use the Feed Forward Back Propagation (FFBP) Artificial Neural Network (ANN) technique. The training, validation and testing data are selected from appropriate experimental data collected in this study. Various estimation models were developed using both deep water wave parameters and local wave parameters. Alternative ANN models with different inputs and neuron numbers were evaluated by determining the best models using a trial and error approach. The estimation results show good agreement with measurements.</description><subject>Artificial Neural Network model</subject><subject>Irregular waves</subject><subject>Marine</subject><subject>Regular waves</subject><subject>Scour depth</subject><subject>Submarine pipelines</subject><issn>0141-1187</issn><issn>1879-1549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzj5yCXBj8RxJS5VVR4SjwucLcfeCJc0DrZDxb_HpZw5zWo132pnELqkpKSEiutNqUcfSkZoXZKqJEQcoRmVzaKgdbU4RjNCK1rQvDlFZzFuCKFMCjlDT-uY3FYn5wfsOxyNnwLWwU-DxXFqtzq4AfDoRujzEPHOpXe8DMl1zjjd42eYwq-knQ8f5-ik032Eiz-do7fb9evqvnh8uXtYLR8LwzlPhWkl503FgFktpAQhrKQMtDWc6KbWrF7QGoCJtjOilRWntQXIz1tbZ8DwObo63B2D_5wgJrV10UDf6wH8FBVtOJOsEVWVrexgNcHHGKBTY8iBw7eiRO27Uxu1707tu1OkUrm7DN0cIMghvhwEFY2DwYB1AUxS1rv_8B-ysnkL</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Kiziloz, Burak</creator><creator>Cevik, Esin</creator><creator>Aydoan, Burak</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201506</creationdate><title>Estimation of scour around submarine pipelines with Artificial Neural Network</title><author>Kiziloz, Burak ; Cevik, Esin ; Aydoan, Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-cb833742e2da688e66d812eadc30a75a25915ee26bfc6b84315dee187dd5a68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial Neural Network model</topic><topic>Irregular waves</topic><topic>Marine</topic><topic>Regular waves</topic><topic>Scour depth</topic><topic>Submarine pipelines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiziloz, Burak</creatorcontrib><creatorcontrib>Cevik, Esin</creatorcontrib><creatorcontrib>Aydoan, Burak</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied ocean research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiziloz, Burak</au><au>Cevik, Esin</au><au>Aydoan, Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of scour around submarine pipelines with Artificial Neural Network</atitle><jtitle>Applied ocean research</jtitle><date>2015-06</date><risdate>2015</risdate><volume>51</volume><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>0141-1187</issn><eissn>1879-1549</eissn><abstract>•Scour depth exposed to regular and irregular wave attacks.•Modeling of scour depth in shoaling condition.•Artificial Neural Network models.
The process of scour around submarine pipelines laid on mobile beds is complicated due to physical processes arising from the triple interaction of waves/currents, beds and pipelines. This paper presents Artificial Neural Network (ANN) models for predicting the scour depth beneath submarine pipelines for different storm conditions. The storm conditions are considered for both regular and irregular wave attacks. The developed models use the Feed Forward Back Propagation (FFBP) Artificial Neural Network (ANN) technique. The training, validation and testing data are selected from appropriate experimental data collected in this study. Various estimation models were developed using both deep water wave parameters and local wave parameters. Alternative ANN models with different inputs and neuron numbers were evaluated by determining the best models using a trial and error approach. The estimation results show good agreement with measurements.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apor.2015.04.006</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-1187 |
ispartof | Applied ocean research, 2015-06, Vol.51, p.241-251 |
issn | 0141-1187 1879-1549 |
language | eng |
recordid | cdi_proquest_miscellaneous_1732827644 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial Neural Network model Irregular waves Marine Regular waves Scour depth Submarine pipelines |
title | Estimation of scour around submarine pipelines with Artificial Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20scour%20around%20submarine%20pipelines%20with%20Artificial%20Neural%20Network&rft.jtitle=Applied%20ocean%20research&rft.au=Kiziloz,%20Burak&rft.date=2015-06&rft.volume=51&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=0141-1187&rft.eissn=1879-1549&rft_id=info:doi/10.1016/j.apor.2015.04.006&rft_dat=%3Cproquest_cross%3E1732827644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732827644&rft_id=info:pmid/&rft_els_id=S0141118715000516&rfr_iscdi=true |