An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation

Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2015-05, Vol.154, p.70-77
Hauptverfasser: Manning, D.T., Hadrich, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 70
container_title Journal of environmental management
container_volume 154
creator Manning, D.T.
Hadrich, J.C.
description Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions. •Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.
doi_str_mv 10.1016/j.jenvman.2015.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732820709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479715000730</els_id><sourcerecordid>1732820709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCTwBZYsMm4foRO2GDRhUUpEpsYG05zs3UUcae2slI_fckMwMLNl3dzfnu6xDyjkHJgKlPQzlgOO5tKDmwqgReAlQvyIZBUxW1EvCSbEAAK6Ru9BW5znkAAMGZfk2ueKVBSWg25HEbKB7tONvJx0BjT6cHpDk6b0dqQ0cPyR_thBT73juPwT2tkO3iYQ18pttgMcXWO9r5HeYJUz7ldgkxPMQ5I93ZTPd-8rvTjDfkVW_HjG8v9Yb8_vb11-334v7n3Y_b7X3hJFdTYbmSumON6MBJV7O64q6V0ELLJaq20hVa1nEFfdPoVggrnOAcQLe11D3j4oZ8PPc9pPg4L5uZvc8Ox9EGXNYyTAtec9DQPI8qpTQXTQUL-uE_dIhzCsshJ6oWSsqVqs6USzHnhL1Z3ri36ckwMKs-M5iLPrPqM8DNom_Jvb90n9s9dv9Sf30twJczgMvnjh6TyScp2PmEbjJd9M-M-ANQR61Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666836440</pqid></control><display><type>article</type><title>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Manning, D.T. ; Hadrich, J.C.</creator><creatorcontrib>Manning, D.T. ; Hadrich, J.C.</creatorcontrib><description>Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions. •Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2015.02.005</identifier><identifier>PMID: 25706409</identifier><identifier>CODEN: JEVMAW</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Agriculture - methods ; Anaerobic digesters ; Anaerobiosis ; Biodegradation ; Biodegradation, Environmental ; California ; Carbon - analysis ; Carbon Dioxide - analysis ; Dairy ; Dairy farms ; Emissions ; Environmental management ; Environmental Pollution - economics ; Environmental Pollution - prevention &amp; control ; Environmental Restoration and Remediation - economics ; Environmental Restoration and Remediation - instrumentation ; Greenhouse Effect - prevention &amp; control ; Greenhouse gases ; Manure ; Methane ; Models, Theoretical ; Refuse Disposal - methods ; Social cost and benefit</subject><ispartof>Journal of environmental management, 2015-05, Vol.154, p.70-77</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Academic Press Ltd. May 1, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</citedby><cites>FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301479715000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25706409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manning, D.T.</creatorcontrib><creatorcontrib>Hadrich, J.C.</creatorcontrib><title>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</title><title>Journal of environmental management</title><addtitle>J Environ Manage</addtitle><description>Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions. •Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.</description><subject>Agriculture - methods</subject><subject>Anaerobic digesters</subject><subject>Anaerobiosis</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>California</subject><subject>Carbon - analysis</subject><subject>Carbon Dioxide - analysis</subject><subject>Dairy</subject><subject>Dairy farms</subject><subject>Emissions</subject><subject>Environmental management</subject><subject>Environmental Pollution - economics</subject><subject>Environmental Pollution - prevention &amp; control</subject><subject>Environmental Restoration and Remediation - economics</subject><subject>Environmental Restoration and Remediation - instrumentation</subject><subject>Greenhouse Effect - prevention &amp; control</subject><subject>Greenhouse gases</subject><subject>Manure</subject><subject>Methane</subject><subject>Models, Theoretical</subject><subject>Refuse Disposal - methods</subject><subject>Social cost and benefit</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi0EotPCTwBZYsMm4foRO2GDRhUUpEpsYG05zs3UUcae2slI_fckMwMLNl3dzfnu6xDyjkHJgKlPQzlgOO5tKDmwqgReAlQvyIZBUxW1EvCSbEAAK6Ru9BW5znkAAMGZfk2ueKVBSWg25HEbKB7tONvJx0BjT6cHpDk6b0dqQ0cPyR_thBT73juPwT2tkO3iYQ18pttgMcXWO9r5HeYJUz7ldgkxPMQ5I93ZTPd-8rvTjDfkVW_HjG8v9Yb8_vb11-334v7n3Y_b7X3hJFdTYbmSumON6MBJV7O64q6V0ELLJaq20hVa1nEFfdPoVggrnOAcQLe11D3j4oZ8PPc9pPg4L5uZvc8Ox9EGXNYyTAtec9DQPI8qpTQXTQUL-uE_dIhzCsshJ6oWSsqVqs6USzHnhL1Z3ri36ckwMKs-M5iLPrPqM8DNom_Jvb90n9s9dv9Sf30twJczgMvnjh6TyScp2PmEbjJd9M-M-ANQR61Y</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Manning, D.T.</creator><creator>Hadrich, J.C.</creator><general>Elsevier Ltd</general><general>Academic Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>8BJ</scope><scope>C1K</scope><scope>F1W</scope><scope>FQK</scope><scope>H97</scope><scope>JBE</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20150501</creationdate><title>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</title><author>Manning, D.T. ; Hadrich, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agriculture - methods</topic><topic>Anaerobic digesters</topic><topic>Anaerobiosis</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>California</topic><topic>Carbon - analysis</topic><topic>Carbon Dioxide - analysis</topic><topic>Dairy</topic><topic>Dairy farms</topic><topic>Emissions</topic><topic>Environmental management</topic><topic>Environmental Pollution - economics</topic><topic>Environmental Pollution - prevention &amp; control</topic><topic>Environmental Restoration and Remediation - economics</topic><topic>Environmental Restoration and Remediation - instrumentation</topic><topic>Greenhouse Effect - prevention &amp; control</topic><topic>Greenhouse gases</topic><topic>Manure</topic><topic>Methane</topic><topic>Models, Theoretical</topic><topic>Refuse Disposal - methods</topic><topic>Social cost and benefit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manning, D.T.</creatorcontrib><creatorcontrib>Hadrich, J.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manning, D.T.</au><au>Hadrich, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</atitle><jtitle>Journal of environmental management</jtitle><addtitle>J Environ Manage</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>154</volume><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>0301-4797</issn><eissn>1095-8630</eissn><coden>JEVMAW</coden><abstract>Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions. •Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25706409</pmid><doi>10.1016/j.jenvman.2015.02.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4797
ispartof Journal of environmental management, 2015-05, Vol.154, p.70-77
issn 0301-4797
1095-8630
language eng
recordid cdi_proquest_miscellaneous_1732820709
source MEDLINE; Elsevier ScienceDirect Journals
subjects Agriculture - methods
Anaerobic digesters
Anaerobiosis
Biodegradation
Biodegradation, Environmental
California
Carbon - analysis
Carbon Dioxide - analysis
Dairy
Dairy farms
Emissions
Environmental management
Environmental Pollution - economics
Environmental Pollution - prevention & control
Environmental Restoration and Remediation - economics
Environmental Restoration and Remediation - instrumentation
Greenhouse Effect - prevention & control
Greenhouse gases
Manure
Methane
Models, Theoretical
Refuse Disposal - methods
Social cost and benefit
title An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20the%20social%20and%20private%20efficiency%20of%20adoption:%20Anaerobic%20digesters%20and%20greenhouse%20gas%20mitigation&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Manning,%20D.T.&rft.date=2015-05-01&rft.volume=154&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=0301-4797&rft.eissn=1095-8630&rft.coden=JEVMAW&rft_id=info:doi/10.1016/j.jenvman.2015.02.005&rft_dat=%3Cproquest_cross%3E1732820709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666836440&rft_id=info:pmid/25706409&rft_els_id=S0301479715000730&rfr_iscdi=true