An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation
Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2015-05, Vol.154, p.70-77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | Journal of environmental management |
container_volume | 154 |
creator | Manning, D.T. Hadrich, J.C. |
description | Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions.
•Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal. |
doi_str_mv | 10.1016/j.jenvman.2015.02.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732820709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479715000730</els_id><sourcerecordid>1732820709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCTwBZYsMm4foRO2GDRhUUpEpsYG05zs3UUcae2slI_fckMwMLNl3dzfnu6xDyjkHJgKlPQzlgOO5tKDmwqgReAlQvyIZBUxW1EvCSbEAAK6Ru9BW5znkAAMGZfk2ueKVBSWg25HEbKB7tONvJx0BjT6cHpDk6b0dqQ0cPyR_thBT73juPwT2tkO3iYQ18pttgMcXWO9r5HeYJUz7ldgkxPMQ5I93ZTPd-8rvTjDfkVW_HjG8v9Yb8_vb11-334v7n3Y_b7X3hJFdTYbmSumON6MBJV7O64q6V0ELLJaq20hVa1nEFfdPoVggrnOAcQLe11D3j4oZ8PPc9pPg4L5uZvc8Ox9EGXNYyTAtec9DQPI8qpTQXTQUL-uE_dIhzCsshJ6oWSsqVqs6USzHnhL1Z3ri36ckwMKs-M5iLPrPqM8DNom_Jvb90n9s9dv9Sf30twJczgMvnjh6TyScp2PmEbjJd9M-M-ANQR61Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666836440</pqid></control><display><type>article</type><title>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Manning, D.T. ; Hadrich, J.C.</creator><creatorcontrib>Manning, D.T. ; Hadrich, J.C.</creatorcontrib><description>Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions.
•Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2015.02.005</identifier><identifier>PMID: 25706409</identifier><identifier>CODEN: JEVMAW</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Agriculture - methods ; Anaerobic digesters ; Anaerobiosis ; Biodegradation ; Biodegradation, Environmental ; California ; Carbon - analysis ; Carbon Dioxide - analysis ; Dairy ; Dairy farms ; Emissions ; Environmental management ; Environmental Pollution - economics ; Environmental Pollution - prevention & control ; Environmental Restoration and Remediation - economics ; Environmental Restoration and Remediation - instrumentation ; Greenhouse Effect - prevention & control ; Greenhouse gases ; Manure ; Methane ; Models, Theoretical ; Refuse Disposal - methods ; Social cost and benefit</subject><ispartof>Journal of environmental management, 2015-05, Vol.154, p.70-77</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Academic Press Ltd. May 1, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</citedby><cites>FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301479715000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25706409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manning, D.T.</creatorcontrib><creatorcontrib>Hadrich, J.C.</creatorcontrib><title>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</title><title>Journal of environmental management</title><addtitle>J Environ Manage</addtitle><description>Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions.
•Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.</description><subject>Agriculture - methods</subject><subject>Anaerobic digesters</subject><subject>Anaerobiosis</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>California</subject><subject>Carbon - analysis</subject><subject>Carbon Dioxide - analysis</subject><subject>Dairy</subject><subject>Dairy farms</subject><subject>Emissions</subject><subject>Environmental management</subject><subject>Environmental Pollution - economics</subject><subject>Environmental Pollution - prevention & control</subject><subject>Environmental Restoration and Remediation - economics</subject><subject>Environmental Restoration and Remediation - instrumentation</subject><subject>Greenhouse Effect - prevention & control</subject><subject>Greenhouse gases</subject><subject>Manure</subject><subject>Methane</subject><subject>Models, Theoretical</subject><subject>Refuse Disposal - methods</subject><subject>Social cost and benefit</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi0EotPCTwBZYsMm4foRO2GDRhUUpEpsYG05zs3UUcae2slI_fckMwMLNl3dzfnu6xDyjkHJgKlPQzlgOO5tKDmwqgReAlQvyIZBUxW1EvCSbEAAK6Ru9BW5znkAAMGZfk2ueKVBSWg25HEbKB7tONvJx0BjT6cHpDk6b0dqQ0cPyR_thBT73juPwT2tkO3iYQ18pttgMcXWO9r5HeYJUz7ldgkxPMQ5I93ZTPd-8rvTjDfkVW_HjG8v9Yb8_vb11-334v7n3Y_b7X3hJFdTYbmSumON6MBJV7O64q6V0ELLJaq20hVa1nEFfdPoVggrnOAcQLe11D3j4oZ8PPc9pPg4L5uZvc8Ox9EGXNYyTAtec9DQPI8qpTQXTQUL-uE_dIhzCsshJ6oWSsqVqs6USzHnhL1Z3ri36ckwMKs-M5iLPrPqM8DNom_Jvb90n9s9dv9Sf30twJczgMvnjh6TyScp2PmEbjJd9M-M-ANQR61Y</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Manning, D.T.</creator><creator>Hadrich, J.C.</creator><general>Elsevier Ltd</general><general>Academic Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>8BJ</scope><scope>C1K</scope><scope>F1W</scope><scope>FQK</scope><scope>H97</scope><scope>JBE</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20150501</creationdate><title>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</title><author>Manning, D.T. ; Hadrich, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-a2647d193d0c4c81852cb40b0b24e6b575ea1d260f997b33a3c322007b847f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agriculture - methods</topic><topic>Anaerobic digesters</topic><topic>Anaerobiosis</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>California</topic><topic>Carbon - analysis</topic><topic>Carbon Dioxide - analysis</topic><topic>Dairy</topic><topic>Dairy farms</topic><topic>Emissions</topic><topic>Environmental management</topic><topic>Environmental Pollution - economics</topic><topic>Environmental Pollution - prevention & control</topic><topic>Environmental Restoration and Remediation - economics</topic><topic>Environmental Restoration and Remediation - instrumentation</topic><topic>Greenhouse Effect - prevention & control</topic><topic>Greenhouse gases</topic><topic>Manure</topic><topic>Methane</topic><topic>Models, Theoretical</topic><topic>Refuse Disposal - methods</topic><topic>Social cost and benefit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manning, D.T.</creatorcontrib><creatorcontrib>Hadrich, J.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manning, D.T.</au><au>Hadrich, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation</atitle><jtitle>Journal of environmental management</jtitle><addtitle>J Environ Manage</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>154</volume><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>0301-4797</issn><eissn>1095-8630</eissn><coden>JEVMAW</coden><abstract>Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions.
•Incorporating non-CO2 pollutants into GHG mitigation policy provides cost savings.•Low carbon prices result in the reliance on incentive policies for AD adoption.•Subsidies covering high AD costs help align social and private optimality.•In warm climates, lagoon ADs can be privately optimal without subsidies.•In warm climates, plug-flow ADs require a larger subsidy to be privately optimal.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25706409</pmid><doi>10.1016/j.jenvman.2015.02.005</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4797 |
ispartof | Journal of environmental management, 2015-05, Vol.154, p.70-77 |
issn | 0301-4797 1095-8630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1732820709 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Agriculture - methods Anaerobic digesters Anaerobiosis Biodegradation Biodegradation, Environmental California Carbon - analysis Carbon Dioxide - analysis Dairy Dairy farms Emissions Environmental management Environmental Pollution - economics Environmental Pollution - prevention & control Environmental Restoration and Remediation - economics Environmental Restoration and Remediation - instrumentation Greenhouse Effect - prevention & control Greenhouse gases Manure Methane Models, Theoretical Refuse Disposal - methods Social cost and benefit |
title | An evaluation of the social and private efficiency of adoption: Anaerobic digesters and greenhouse gas mitigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20the%20social%20and%20private%20efficiency%20of%20adoption:%20Anaerobic%20digesters%20and%20greenhouse%20gas%20mitigation&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Manning,%20D.T.&rft.date=2015-05-01&rft.volume=154&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=0301-4797&rft.eissn=1095-8630&rft.coden=JEVMAW&rft_id=info:doi/10.1016/j.jenvman.2015.02.005&rft_dat=%3Cproquest_cross%3E1732820709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666836440&rft_id=info:pmid/25706409&rft_els_id=S0301479715000730&rfr_iscdi=true |