Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes
Obesity is characterized by a substantial increase in adipose tissue that may contribute to energy balance. Recently, obesity was suggested to be associated with impaired mitochondrial function in adipocytes. In this study, we investigated the following: 1) the respiratory capacities of mitochondria...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: endocrinology and metabolism 2015-08, Vol.309 (4), p.E380-E387 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E387 |
---|---|
container_issue | 4 |
container_start_page | E380 |
container_title | American journal of physiology: endocrinology and metabolism |
container_volume | 309 |
creator | Fischer, Britta Schöttl, Theresa Schempp, Christina Fromme, Tobias Hauner, Hans Klingenspor, Martin Skurk, Thomas |
description | Obesity is characterized by a substantial increase in adipose tissue that may contribute to energy balance. Recently, obesity was suggested to be associated with impaired mitochondrial function in adipocytes. In this study, we investigated the following: 1) the respiratory capacities of mitochondria isolated from mature adipocytes of female subjects whose body mass index (BMI) values were distributed over a wide range and 2) the amounts of electron transport chain complexes in these mitochondria. Fat cells were isolated from adipose tissue specimens by collagenase digestion. Mitochondria were isolated from these fat cells, and their respiratory capacity was determined using a Clark-type electrode. Fat cells were also sorted on the basis of their size into large and small fractions to assess their respiration. Western blot analyses were performed to quantify respiratory chain complex components. We also examined mitochondrial activity development during differentiation using human Simpson-Golabi-Behmel syndrome cells. Our results showed that mitochondrial respiratory capacities in adipocytes were inversely associated with BMI values but were independent of cell size. Western blot analyses revealed significantly fewer complex I and IV components in adipose tissues from obese compared with nonobese women. These results suggest that differences at the level of respiratory chain complexes might be responsible for the deterioration of respiratory capacity in obese individuals. In particular, electron transport at the level of complexes I and IV seems to be most affected. |
doi_str_mv | 10.1152/ajpendo.00524.2014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732820307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1704529810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-759701b662bf38bd433438e649a688fa8b8da01715a8410821c33f2204244aca3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1URJfCH-ihstQLlywz_kicY1UVqFSJC5wjx3a0XiV2aidtc-WXk2W3HDhxsObg5301o4eQS4QtomSf9X50wcYtgGRiywDFG7JZP1iBUsozsgGseYFK1Ofkfc57AKikYO_IOStBIVNiQ37dhyeXsqPJ9XryMeSdH2nrpmfnAm2jXeigc6Y-WPdCdbB08FM0uxhs8rqn8cXbNffk6LiLeX1pOfZQo0dt_LSsUbqbBx1onlszTzq4OGeqrR-jWSaXP5C3ne6z-3iaF-Tnl7sft9-Kh-9f729vHgojQE1FJesKsC1L1nZctVZwLrhypah1qVSnVausBqxQaiUQFEPDeccYCCaENppfkE_H3jHFx9nlqRl8Nq7vjxs1WHGmGHCo_gMFIVmtEFb0-h90H-cU1kMOlEQFFeJKsSNlUsw5ua4Zkx90WhqE5iCzOcls_shsDjLX0NWpem4HZ_9GXu3x312qnbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705180711</pqid></control><display><type>article</type><title>Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Fischer, Britta ; Schöttl, Theresa ; Schempp, Christina ; Fromme, Tobias ; Hauner, Hans ; Klingenspor, Martin ; Skurk, Thomas</creator><creatorcontrib>Fischer, Britta ; Schöttl, Theresa ; Schempp, Christina ; Fromme, Tobias ; Hauner, Hans ; Klingenspor, Martin ; Skurk, Thomas</creatorcontrib><description>Obesity is characterized by a substantial increase in adipose tissue that may contribute to energy balance. Recently, obesity was suggested to be associated with impaired mitochondrial function in adipocytes. In this study, we investigated the following: 1) the respiratory capacities of mitochondria isolated from mature adipocytes of female subjects whose body mass index (BMI) values were distributed over a wide range and 2) the amounts of electron transport chain complexes in these mitochondria. Fat cells were isolated from adipose tissue specimens by collagenase digestion. Mitochondria were isolated from these fat cells, and their respiratory capacity was determined using a Clark-type electrode. Fat cells were also sorted on the basis of their size into large and small fractions to assess their respiration. Western blot analyses were performed to quantify respiratory chain complex components. We also examined mitochondrial activity development during differentiation using human Simpson-Golabi-Behmel syndrome cells. Our results showed that mitochondrial respiratory capacities in adipocytes were inversely associated with BMI values but were independent of cell size. Western blot analyses revealed significantly fewer complex I and IV components in adipose tissues from obese compared with nonobese women. These results suggest that differences at the level of respiratory chain complexes might be responsible for the deterioration of respiratory capacity in obese individuals. In particular, electron transport at the level of complexes I and IV seems to be most affected.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/ajpendo.00524.2014</identifier><identifier>PMID: 26081284</identifier><identifier>CODEN: AJPMD9</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adipocytes - cytology ; Adipocytes - metabolism ; Adipocytes - pathology ; Adult ; Aged ; Body Mass Index ; Cell Respiration ; Cell Size ; Cells ; Cells, Cultured ; Electrodes ; Female ; Humans ; Middle Aged ; Mitochondria ; Mitochondria - metabolism ; Obesity ; Oxidative Phosphorylation ; Phosphorylation ; Subcutaneous Fat - cytology ; Subcutaneous Fat - metabolism ; Subcutaneous Fat - pathology ; Young Adult</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2015-08, Vol.309 (4), p.E380-E387</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Copyright American Physiological Society Aug 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-759701b662bf38bd433438e649a688fa8b8da01715a8410821c33f2204244aca3</citedby><cites>FETCH-LOGICAL-c408t-759701b662bf38bd433438e649a688fa8b8da01715a8410821c33f2204244aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3026,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26081284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Britta</creatorcontrib><creatorcontrib>Schöttl, Theresa</creatorcontrib><creatorcontrib>Schempp, Christina</creatorcontrib><creatorcontrib>Fromme, Tobias</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Klingenspor, Martin</creatorcontrib><creatorcontrib>Skurk, Thomas</creatorcontrib><title>Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>Obesity is characterized by a substantial increase in adipose tissue that may contribute to energy balance. Recently, obesity was suggested to be associated with impaired mitochondrial function in adipocytes. In this study, we investigated the following: 1) the respiratory capacities of mitochondria isolated from mature adipocytes of female subjects whose body mass index (BMI) values were distributed over a wide range and 2) the amounts of electron transport chain complexes in these mitochondria. Fat cells were isolated from adipose tissue specimens by collagenase digestion. Mitochondria were isolated from these fat cells, and their respiratory capacity was determined using a Clark-type electrode. Fat cells were also sorted on the basis of their size into large and small fractions to assess their respiration. Western blot analyses were performed to quantify respiratory chain complex components. We also examined mitochondrial activity development during differentiation using human Simpson-Golabi-Behmel syndrome cells. Our results showed that mitochondrial respiratory capacities in adipocytes were inversely associated with BMI values but were independent of cell size. Western blot analyses revealed significantly fewer complex I and IV components in adipose tissues from obese compared with nonobese women. These results suggest that differences at the level of respiratory chain complexes might be responsible for the deterioration of respiratory capacity in obese individuals. In particular, electron transport at the level of complexes I and IV seems to be most affected.</description><subject>Adipocytes - cytology</subject><subject>Adipocytes - metabolism</subject><subject>Adipocytes - pathology</subject><subject>Adult</subject><subject>Aged</subject><subject>Body Mass Index</subject><subject>Cell Respiration</subject><subject>Cell Size</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Electrodes</subject><subject>Female</subject><subject>Humans</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Obesity</subject><subject>Oxidative Phosphorylation</subject><subject>Phosphorylation</subject><subject>Subcutaneous Fat - cytology</subject><subject>Subcutaneous Fat - metabolism</subject><subject>Subcutaneous Fat - pathology</subject><subject>Young Adult</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi1URJfCH-ihstQLlywz_kicY1UVqFSJC5wjx3a0XiV2aidtc-WXk2W3HDhxsObg5301o4eQS4QtomSf9X50wcYtgGRiywDFG7JZP1iBUsozsgGseYFK1Ofkfc57AKikYO_IOStBIVNiQ37dhyeXsqPJ9XryMeSdH2nrpmfnAm2jXeigc6Y-WPdCdbB08FM0uxhs8rqn8cXbNffk6LiLeX1pOfZQo0dt_LSsUbqbBx1onlszTzq4OGeqrR-jWSaXP5C3ne6z-3iaF-Tnl7sft9-Kh-9f729vHgojQE1FJesKsC1L1nZctVZwLrhypah1qVSnVausBqxQaiUQFEPDeccYCCaENppfkE_H3jHFx9nlqRl8Nq7vjxs1WHGmGHCo_gMFIVmtEFb0-h90H-cU1kMOlEQFFeJKsSNlUsw5ua4Zkx90WhqE5iCzOcls_shsDjLX0NWpem4HZ_9GXu3x312qnbE</recordid><startdate>20150815</startdate><enddate>20150815</enddate><creator>Fischer, Britta</creator><creator>Schöttl, Theresa</creator><creator>Schempp, Christina</creator><creator>Fromme, Tobias</creator><creator>Hauner, Hans</creator><creator>Klingenspor, Martin</creator><creator>Skurk, Thomas</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20150815</creationdate><title>Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes</title><author>Fischer, Britta ; Schöttl, Theresa ; Schempp, Christina ; Fromme, Tobias ; Hauner, Hans ; Klingenspor, Martin ; Skurk, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-759701b662bf38bd433438e649a688fa8b8da01715a8410821c33f2204244aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adipocytes - cytology</topic><topic>Adipocytes - metabolism</topic><topic>Adipocytes - pathology</topic><topic>Adult</topic><topic>Aged</topic><topic>Body Mass Index</topic><topic>Cell Respiration</topic><topic>Cell Size</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Electrodes</topic><topic>Female</topic><topic>Humans</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Obesity</topic><topic>Oxidative Phosphorylation</topic><topic>Phosphorylation</topic><topic>Subcutaneous Fat - cytology</topic><topic>Subcutaneous Fat - metabolism</topic><topic>Subcutaneous Fat - pathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Britta</creatorcontrib><creatorcontrib>Schöttl, Theresa</creatorcontrib><creatorcontrib>Schempp, Christina</creatorcontrib><creatorcontrib>Fromme, Tobias</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Klingenspor, Martin</creatorcontrib><creatorcontrib>Skurk, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Britta</au><au>Schöttl, Theresa</au><au>Schempp, Christina</au><au>Fromme, Tobias</au><au>Hauner, Hans</au><au>Klingenspor, Martin</au><au>Skurk, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2015-08-15</date><risdate>2015</risdate><volume>309</volume><issue>4</issue><spage>E380</spage><epage>E387</epage><pages>E380-E387</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><coden>AJPMD9</coden><abstract>Obesity is characterized by a substantial increase in adipose tissue that may contribute to energy balance. Recently, obesity was suggested to be associated with impaired mitochondrial function in adipocytes. In this study, we investigated the following: 1) the respiratory capacities of mitochondria isolated from mature adipocytes of female subjects whose body mass index (BMI) values were distributed over a wide range and 2) the amounts of electron transport chain complexes in these mitochondria. Fat cells were isolated from adipose tissue specimens by collagenase digestion. Mitochondria were isolated from these fat cells, and their respiratory capacity was determined using a Clark-type electrode. Fat cells were also sorted on the basis of their size into large and small fractions to assess their respiration. Western blot analyses were performed to quantify respiratory chain complex components. We also examined mitochondrial activity development during differentiation using human Simpson-Golabi-Behmel syndrome cells. Our results showed that mitochondrial respiratory capacities in adipocytes were inversely associated with BMI values but were independent of cell size. Western blot analyses revealed significantly fewer complex I and IV components in adipose tissues from obese compared with nonobese women. These results suggest that differences at the level of respiratory chain complexes might be responsible for the deterioration of respiratory capacity in obese individuals. In particular, electron transport at the level of complexes I and IV seems to be most affected.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>26081284</pmid><doi>10.1152/ajpendo.00524.2014</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0193-1849 |
ispartof | American journal of physiology: endocrinology and metabolism, 2015-08, Vol.309 (4), p.E380-E387 |
issn | 0193-1849 1522-1555 |
language | eng |
recordid | cdi_proquest_miscellaneous_1732820307 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adipocytes - cytology Adipocytes - metabolism Adipocytes - pathology Adult Aged Body Mass Index Cell Respiration Cell Size Cells Cells, Cultured Electrodes Female Humans Middle Aged Mitochondria Mitochondria - metabolism Obesity Oxidative Phosphorylation Phosphorylation Subcutaneous Fat - cytology Subcutaneous Fat - metabolism Subcutaneous Fat - pathology Young Adult |
title | Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20relationship%20between%20body%20mass%20index%20and%20mitochondrial%20oxidative%20phosphorylation%20capacity%20in%20human%20subcutaneous%20adipocytes&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Fischer,%20Britta&rft.date=2015-08-15&rft.volume=309&rft.issue=4&rft.spage=E380&rft.epage=E387&rft.pages=E380-E387&rft.issn=0193-1849&rft.eissn=1522-1555&rft.coden=AJPMD9&rft_id=info:doi/10.1152/ajpendo.00524.2014&rft_dat=%3Cproquest_cross%3E1704529810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705180711&rft_id=info:pmid/26081284&rfr_iscdi=true |