Modeling the effect of light on whole-stream respiration

Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are availabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 1999-05, Vol.117 (2), p.333-342
Hauptverfasser: Parkhill, Kenneth L., Gulliver, John S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 2
container_start_page 333
container_title Ecological modelling
container_volume 117
creator Parkhill, Kenneth L.
Gulliver, John S.
description Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration ( R) on the average solar flux for the period t( I ̄ t ): R=( R 20+ β R I ̄ t )∗ θ R ( T−20) where R 20 and β R are fitted coefficients, T is temperature in °C, and θ R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.
doi_str_mv 10.1016/S0304-3800(99)00017-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17313538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380099000174</els_id><sourcerecordid>17313538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIMxCRBejObnMTFYixRsoLtR1iMlJG5lOajJVfHunrejS1TmL7z-Xj5BDoGdAoTp_opyKkjeUnih1SimFuhRbZARNzcqasmqbjH6RXbKX89sKYg0bkeYhOmxDNy36GRboPdq-iL5ow3Q2NF3xOYstlrlPaOZFwrwIyfQhdvtkx5s248FPHZOX66vnyW15_3hzN7m8Ly2v6r4EBlxRXxlnneKOM0krI420SoDyIF6l8q62AkA47hVINhxZg6okOss85WNyvJm7SPF9ibnX85Attq3pMC6zhpoDl7wZQLkBbYo5J_R6kcLcpC8NVK886bUnvZKgldJrT1oMuaOfBSZb0_pkOhvyX7hpBGN8wC42GA7PfgRMOtuAnUUX0uBMuxj-WfQNgfl6ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17313538</pqid></control><display><type>article</type><title>Modeling the effect of light on whole-stream respiration</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Parkhill, Kenneth L. ; Gulliver, John S.</creator><creatorcontrib>Parkhill, Kenneth L. ; Gulliver, John S.</creatorcontrib><description>Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration ( R) on the average solar flux for the period t( I ̄ t ): R=( R 20+ β R I ̄ t )∗ θ R ( T−20) where R 20 and β R are fitted coefficients, T is temperature in °C, and θ R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/S0304-3800(99)00017-4</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Biological and medical sciences ; Diel oxygen surveys ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Photorespiration ; Photosynthesis ; Productivity</subject><ispartof>Ecological modelling, 1999-05, Vol.117 (2), p.333-342</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</citedby><cites>FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3800(99)00017-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1884223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parkhill, Kenneth L.</creatorcontrib><creatorcontrib>Gulliver, John S.</creatorcontrib><title>Modeling the effect of light on whole-stream respiration</title><title>Ecological modelling</title><description>Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration ( R) on the average solar flux for the period t( I ̄ t ): R=( R 20+ β R I ̄ t )∗ θ R ( T−20) where R 20 and β R are fitted coefficients, T is temperature in °C, and θ R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.</description><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Diel oxygen surveys</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Productivity</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIMxCRBejObnMTFYixRsoLtR1iMlJG5lOajJVfHunrejS1TmL7z-Xj5BDoGdAoTp_opyKkjeUnih1SimFuhRbZARNzcqasmqbjH6RXbKX89sKYg0bkeYhOmxDNy36GRboPdq-iL5ow3Q2NF3xOYstlrlPaOZFwrwIyfQhdvtkx5s248FPHZOX66vnyW15_3hzN7m8Ly2v6r4EBlxRXxlnneKOM0krI420SoDyIF6l8q62AkA47hVINhxZg6okOss85WNyvJm7SPF9ibnX85Attq3pMC6zhpoDl7wZQLkBbYo5J_R6kcLcpC8NVK886bUnvZKgldJrT1oMuaOfBSZb0_pkOhvyX7hpBGN8wC42GA7PfgRMOtuAnUUX0uBMuxj-WfQNgfl6ZQ</recordid><startdate>19990517</startdate><enddate>19990517</enddate><creator>Parkhill, Kenneth L.</creator><creator>Gulliver, John S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19990517</creationdate><title>Modeling the effect of light on whole-stream respiration</title><author>Parkhill, Kenneth L. ; Gulliver, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Diel oxygen surveys</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Productivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parkhill, Kenneth L.</creatorcontrib><creatorcontrib>Gulliver, John S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parkhill, Kenneth L.</au><au>Gulliver, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the effect of light on whole-stream respiration</atitle><jtitle>Ecological modelling</jtitle><date>1999-05-17</date><risdate>1999</risdate><volume>117</volume><issue>2</issue><spage>333</spage><epage>342</epage><pages>333-342</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration ( R) on the average solar flux for the period t( I ̄ t ): R=( R 20+ β R I ̄ t )∗ θ R ( T−20) where R 20 and β R are fitted coefficients, T is temperature in °C, and θ R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3800(99)00017-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 1999-05, Vol.117 (2), p.333-342
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_17313538
source ScienceDirect Journals (5 years ago - present)
subjects Animal, plant and microbial ecology
Biological and medical sciences
Diel oxygen surveys
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Methods and techniques (sampling, tagging, trapping, modelling...)
Photorespiration
Photosynthesis
Productivity
title Modeling the effect of light on whole-stream respiration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20effect%20of%20light%20on%20whole-stream%20respiration&rft.jtitle=Ecological%20modelling&rft.au=Parkhill,%20Kenneth%20L.&rft.date=1999-05-17&rft.volume=117&rft.issue=2&rft.spage=333&rft.epage=342&rft.pages=333-342&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/S0304-3800(99)00017-4&rft_dat=%3Cproquest_cross%3E17313538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17313538&rft_id=info:pmid/&rft_els_id=S0304380099000174&rfr_iscdi=true