Modeling the effect of light on whole-stream respiration
Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are availabl...
Gespeichert in:
Veröffentlicht in: | Ecological modelling 1999-05, Vol.117 (2), p.333-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 2 |
container_start_page | 333 |
container_title | Ecological modelling |
container_volume | 117 |
creator | Parkhill, Kenneth L. Gulliver, John S. |
description | Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration (
R) on the average solar flux for the period
t(
I
̄
t
):
R=(
R
20+
β
R
I
̄
t
)∗
θ
R
(
T−20)
where
R
20 and
β
R are fitted coefficients,
T is temperature in °C, and
θ
R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models. |
doi_str_mv | 10.1016/S0304-3800(99)00017-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17313538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380099000174</els_id><sourcerecordid>17313538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIMxCRBejObnMTFYixRsoLtR1iMlJG5lOajJVfHunrejS1TmL7z-Xj5BDoGdAoTp_opyKkjeUnih1SimFuhRbZARNzcqasmqbjH6RXbKX89sKYg0bkeYhOmxDNy36GRboPdq-iL5ow3Q2NF3xOYstlrlPaOZFwrwIyfQhdvtkx5s248FPHZOX66vnyW15_3hzN7m8Ly2v6r4EBlxRXxlnneKOM0krI420SoDyIF6l8q62AkA47hVINhxZg6okOss85WNyvJm7SPF9ibnX85Attq3pMC6zhpoDl7wZQLkBbYo5J_R6kcLcpC8NVK886bUnvZKgldJrT1oMuaOfBSZb0_pkOhvyX7hpBGN8wC42GA7PfgRMOtuAnUUX0uBMuxj-WfQNgfl6ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17313538</pqid></control><display><type>article</type><title>Modeling the effect of light on whole-stream respiration</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Parkhill, Kenneth L. ; Gulliver, John S.</creator><creatorcontrib>Parkhill, Kenneth L. ; Gulliver, John S.</creatorcontrib><description>Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration (
R) on the average solar flux for the period
t(
I
̄
t
):
R=(
R
20+
β
R
I
̄
t
)∗
θ
R
(
T−20)
where
R
20 and
β
R are fitted coefficients,
T is temperature in °C, and
θ
R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/S0304-3800(99)00017-4</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Biological and medical sciences ; Diel oxygen surveys ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Photorespiration ; Photosynthesis ; Productivity</subject><ispartof>Ecological modelling, 1999-05, Vol.117 (2), p.333-342</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</citedby><cites>FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3800(99)00017-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1884223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parkhill, Kenneth L.</creatorcontrib><creatorcontrib>Gulliver, John S.</creatorcontrib><title>Modeling the effect of light on whole-stream respiration</title><title>Ecological modelling</title><description>Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration (
R) on the average solar flux for the period
t(
I
̄
t
):
R=(
R
20+
β
R
I
̄
t
)∗
θ
R
(
T−20)
where
R
20 and
β
R are fitted coefficients,
T is temperature in °C, and
θ
R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.</description><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Diel oxygen surveys</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Productivity</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIMxCRBejObnMTFYixRsoLtR1iMlJG5lOajJVfHunrejS1TmL7z-Xj5BDoGdAoTp_opyKkjeUnih1SimFuhRbZARNzcqasmqbjH6RXbKX89sKYg0bkeYhOmxDNy36GRboPdq-iL5ow3Q2NF3xOYstlrlPaOZFwrwIyfQhdvtkx5s248FPHZOX66vnyW15_3hzN7m8Ly2v6r4EBlxRXxlnneKOM0krI420SoDyIF6l8q62AkA47hVINhxZg6okOss85WNyvJm7SPF9ibnX85Attq3pMC6zhpoDl7wZQLkBbYo5J_R6kcLcpC8NVK886bUnvZKgldJrT1oMuaOfBSZb0_pkOhvyX7hpBGN8wC42GA7PfgRMOtuAnUUX0uBMuxj-WfQNgfl6ZQ</recordid><startdate>19990517</startdate><enddate>19990517</enddate><creator>Parkhill, Kenneth L.</creator><creator>Gulliver, John S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19990517</creationdate><title>Modeling the effect of light on whole-stream respiration</title><author>Parkhill, Kenneth L. ; Gulliver, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-121390f6adcd93d32506a5a5c9419f14b59fd7c4114d3f915238071965edc2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Diel oxygen surveys</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Productivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parkhill, Kenneth L.</creatorcontrib><creatorcontrib>Gulliver, John S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parkhill, Kenneth L.</au><au>Gulliver, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the effect of light on whole-stream respiration</atitle><jtitle>Ecological modelling</jtitle><date>1999-05-17</date><risdate>1999</risdate><volume>117</volume><issue>2</issue><spage>333</spage><epage>342</epage><pages>333-342</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Whole-stream respiration is normally assumed to be independent of incident solar radiation, and standard stream productivity analyses use respiration measurements made at night to estimate respiration during the day. To our knowledge, no day-time measurements of whole-stream respiration are available to confirm that it is independent of light flux. Whole-stream respiration originates from both autotrophic and heterotrophic activity, and many mechanisms can combine to complicate respiration dynamics. Evidence that whole-stream respiration is a function of light flux is fairly strong, albeit indirect. (1) Incident solar radiation has been shown to stimulate autotroph respiration; and (2) if whole-stream respiration is assumed to be independent of light flux, consistent productivity/irradiance relationships cannot be defined. In this paper, we present photorespiration models and show how they can be used to improve predictions of productivity and dissolved oxygen dynamics in streams by eliminating hysteresis in whole-stream productivity/irradiance relationships. We propose that a simple linear function be used to describe the dependence of whole-stream respiration (
R) on the average solar flux for the period
t(
I
̄
t
):
R=(
R
20+
β
R
I
̄
t
)∗
θ
R
(
T−20)
where
R
20 and
β
R are fitted coefficients,
T is temperature in °C, and
θ
R is an Arrhenius coefficient representing the influence of temperature on respiration. We discuss some complications with using photorespiration functions, including how to determine fitted coefficients and how to evaluate the function’s utility in productivity models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3800(99)00017-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3800 |
ispartof | Ecological modelling, 1999-05, Vol.117 (2), p.333-342 |
issn | 0304-3800 1872-7026 |
language | eng |
recordid | cdi_proquest_miscellaneous_17313538 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Animal, plant and microbial ecology Biological and medical sciences Diel oxygen surveys Fundamental and applied biological sciences. Psychology General aspects. Techniques Methods and techniques (sampling, tagging, trapping, modelling...) Photorespiration Photosynthesis Productivity |
title | Modeling the effect of light on whole-stream respiration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20effect%20of%20light%20on%20whole-stream%20respiration&rft.jtitle=Ecological%20modelling&rft.au=Parkhill,%20Kenneth%20L.&rft.date=1999-05-17&rft.volume=117&rft.issue=2&rft.spage=333&rft.epage=342&rft.pages=333-342&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/S0304-3800(99)00017-4&rft_dat=%3Cproquest_cross%3E17313538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17313538&rft_id=info:pmid/&rft_els_id=S0304380099000174&rfr_iscdi=true |