Ultrasensitive NO2 Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures

In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1–5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-11, Vol.7 (43), p.24338-24352
Hauptverfasser: Tammanoon, Nantikan, Wisitsoraat, Anurat, Sriprachuabwong, Chakrit, Phokharatkul, Ditsayut, Tuantranont, Adisorn, Phanichphant, Sukon, Liewhiran, Chaikarn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24352
container_issue 43
container_start_page 24338
container_title ACS applied materials & interfaces
container_volume 7
creator Tammanoon, Nantikan
Wisitsoraat, Anurat
Sriprachuabwong, Chakrit
Phokharatkul, Ditsayut
Tuantranont, Adisorn
Phanichphant, Sukon
Liewhiran, Chaikarn
description In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1–5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10–20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26 342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal–semiconductor junctions and accessible interfaces of graphene–SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.
doi_str_mv 10.1021/acsami.5b09067
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730684769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730684769</sourcerecordid><originalsourceid>FETCH-LOGICAL-a246t-c30be5a55a2bf11f5d6b6946adfd8cc7eba86babae34e2ed1b45122458a2fc353</originalsourceid><addsrcrecordid>eNo9kc9u1DAQxiMEoqVw5Yh8REhpbcd2kiOstqXStnvY9mxNnAlN5djBdoC98Q48Dy_Dk2DYhdP80W--Gc1XFK8ZPWeUswswEabxXHa0pap-UpyyVoiy4ZI__Z8LcVK8iPGRUlVxKp8XJ1yJum0lOy1-3tsUIKKLYxq_ILndcrLLlQ_kQ273xDuyfZhGQ24wgf31_ccOc-Vdv5iUoWuXMAxgMBI_kLVFk4K3-zQasHZP1t8Gb0dIWegqwPyADi8uLUxY7uYA-_IGeiQ7l5fegvMzhDxos9bKT7PPJyHZzhggje4TgUQ2_iu5w-lvawkYXxbPBrARXx3jWXF_ub5bfSw326vr1ftNCVyoVJqKdihBSuDdwNgge9WpVijoh74xpsYOGtVBB1gJ5NizTkjGuZAN8MFUsjor3h505-A_LxiTnsZo0Fpw6JeoWV1R1YhatRl9c0SXbsJez2GcIOz1v5dn4N0ByNbpR78Ely_XjOo_fuqDn_roZ_UbaiGX-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730684769</pqid></control><display><type>article</type><title>Ultrasensitive NO2 Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures</title><source>ACS Publications</source><creator>Tammanoon, Nantikan ; Wisitsoraat, Anurat ; Sriprachuabwong, Chakrit ; Phokharatkul, Ditsayut ; Tuantranont, Adisorn ; Phanichphant, Sukon ; Liewhiran, Chaikarn</creator><creatorcontrib>Tammanoon, Nantikan ; Wisitsoraat, Anurat ; Sriprachuabwong, Chakrit ; Phokharatkul, Ditsayut ; Tuantranont, Adisorn ; Phanichphant, Sukon ; Liewhiran, Chaikarn</creatorcontrib><description>In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1–5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10–20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26 342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal–semiconductor junctions and accessible interfaces of graphene–SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b09067</identifier><identifier>PMID: 26479951</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-11, Vol.7 (43), p.24338-24352</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b09067$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b09067$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26479951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tammanoon, Nantikan</creatorcontrib><creatorcontrib>Wisitsoraat, Anurat</creatorcontrib><creatorcontrib>Sriprachuabwong, Chakrit</creatorcontrib><creatorcontrib>Phokharatkul, Ditsayut</creatorcontrib><creatorcontrib>Tuantranont, Adisorn</creatorcontrib><creatorcontrib>Phanichphant, Sukon</creatorcontrib><creatorcontrib>Liewhiran, Chaikarn</creatorcontrib><title>Ultrasensitive NO2 Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1–5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10–20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26 342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal–semiconductor junctions and accessible interfaces of graphene–SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kc9u1DAQxiMEoqVw5Yh8REhpbcd2kiOstqXStnvY9mxNnAlN5djBdoC98Q48Dy_Dk2DYhdP80W--Gc1XFK8ZPWeUswswEabxXHa0pap-UpyyVoiy4ZI__Z8LcVK8iPGRUlVxKp8XJ1yJum0lOy1-3tsUIKKLYxq_ILndcrLLlQ_kQ273xDuyfZhGQ24wgf31_ccOc-Vdv5iUoWuXMAxgMBI_kLVFk4K3-zQasHZP1t8Gb0dIWegqwPyADi8uLUxY7uYA-_IGeiQ7l5fegvMzhDxos9bKT7PPJyHZzhggje4TgUQ2_iu5w-lvawkYXxbPBrARXx3jWXF_ub5bfSw326vr1ftNCVyoVJqKdihBSuDdwNgge9WpVijoh74xpsYOGtVBB1gJ5NizTkjGuZAN8MFUsjor3h505-A_LxiTnsZo0Fpw6JeoWV1R1YhatRl9c0SXbsJez2GcIOz1v5dn4N0ByNbpR78Ely_XjOo_fuqDn_roZ_UbaiGX-w</recordid><startdate>20151104</startdate><enddate>20151104</enddate><creator>Tammanoon, Nantikan</creator><creator>Wisitsoraat, Anurat</creator><creator>Sriprachuabwong, Chakrit</creator><creator>Phokharatkul, Ditsayut</creator><creator>Tuantranont, Adisorn</creator><creator>Phanichphant, Sukon</creator><creator>Liewhiran, Chaikarn</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20151104</creationdate><title>Ultrasensitive NO2 Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures</title><author>Tammanoon, Nantikan ; Wisitsoraat, Anurat ; Sriprachuabwong, Chakrit ; Phokharatkul, Ditsayut ; Tuantranont, Adisorn ; Phanichphant, Sukon ; Liewhiran, Chaikarn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a246t-c30be5a55a2bf11f5d6b6946adfd8cc7eba86babae34e2ed1b45122458a2fc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tammanoon, Nantikan</creatorcontrib><creatorcontrib>Wisitsoraat, Anurat</creatorcontrib><creatorcontrib>Sriprachuabwong, Chakrit</creatorcontrib><creatorcontrib>Phokharatkul, Ditsayut</creatorcontrib><creatorcontrib>Tuantranont, Adisorn</creatorcontrib><creatorcontrib>Phanichphant, Sukon</creatorcontrib><creatorcontrib>Liewhiran, Chaikarn</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tammanoon, Nantikan</au><au>Wisitsoraat, Anurat</au><au>Sriprachuabwong, Chakrit</au><au>Phokharatkul, Ditsayut</au><au>Tuantranont, Adisorn</au><au>Phanichphant, Sukon</au><au>Liewhiran, Chaikarn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive NO2 Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-11-04</date><risdate>2015</risdate><volume>7</volume><issue>43</issue><spage>24338</spage><epage>24352</epage><pages>24338-24352</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1–5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10–20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26 342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal–semiconductor junctions and accessible interfaces of graphene–SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26479951</pmid><doi>10.1021/acsami.5b09067</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-11, Vol.7 (43), p.24338-24352
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1730684769
source ACS Publications
title Ultrasensitive NO2 Sensor Based on Ohmic Metal–Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20NO2%20Sensor%20Based%20on%20Ohmic%20Metal%E2%80%93Semiconductor%20Interfaces%20of%20Electrolytically%20Exfoliated%20Graphene/Flame-Spray-Made%20SnO2%20Nanoparticles%20Composite%20Operating%20at%20Low%20Temperatures&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Tammanoon,%20Nantikan&rft.date=2015-11-04&rft.volume=7&rft.issue=43&rft.spage=24338&rft.epage=24352&rft.pages=24338-24352&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b09067&rft_dat=%3Cproquest_pubme%3E1730684769%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730684769&rft_id=info:pmid/26479951&rfr_iscdi=true