Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain

Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology 2005-01, Vol.57 (1), p.50-59
Hauptverfasser: Felderhoff-Mueser, Ursula, Sifringer, Marco, Polley, Oliver, Dzietko, Mark, Leineweber, Birgit, Mahler, Lieselotte, Baier, Michael, Bittigau, Petra, Obladen, Michael, Ikonomidou, Chrysanthy, Bührer, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 50
container_title Annals of neurology
container_volume 57
creator Felderhoff-Mueser, Ursula
Sifringer, Marco
Polley, Oliver
Dzietko, Mark
Leineweber, Birgit
Mahler, Lieselotte
Baier, Michael
Bittigau, Petra
Obladen, Michael
Ikonomidou, Chrysanthy
Bührer, Christoph
description Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase‐1–processed cytokines, interleukin (IL)–1β and IL‐18, are involved in oxygen‐induced neuronal cell death. Six‐day‐old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro‐Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL‐1β, IL‐18, and IL‐18 receptor α (IL‐18Rα). Intraperitoneal injection of recombinant human IL‐18–binding protein, a specific inhibitor of IL‐18, attenuated hyperoxic brain injury. Mice deficient in IL‐1 receptor–associated kinase 4 (IRAK‐4), which is pivotal for both IL‐1β and IL‐18 signal transduction, were protected against oxygen‐mediated neurotoxicity. These findings causally link IL‐1β and IL‐18 to hyperoxia‐induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen. Ann Neurol 2005;57:50–59
doi_str_mv 10.1002/ana.20322
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17302856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17302856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5232-6f9df1c8fc688a60d4f7bb5afead570b71b716426fd23e05c2b29b8d0409507c3</originalsourceid><addsrcrecordid>eNp1kEFv1DAQha0K1C6lh_4BtJcicXA7tmMnOS4rWpCqghCIqhfLsces22wS7AS6_x4vu9AT0kij0Xwz7-kRcsrgnAHwC9OZcw6C8wMyY1IwWvGifkZmIFRBJRPFEXmR0j0A1IrBITliUnEuCzEjt0uTBpOQMjrE3mJK6OahGzG2OD2ELuVhvtoMGPvHYGjo3GQzYbFt5w7NuNruxxXm4Se2_RC67_MmmtC9JM-9aROe7Psx-Xr57svyPb3-ePVhubimVnLBqfK188xW3qqqMgpc4cumkcajcbKEpmS5VMGVd1wgSMsbXjeVgwJqCaUVx-T17m-2_2PCNOp1SFt7psN-SpqVAnglVQbf7EAb-5Qiej3EsDZxoxnobYw6x6j_xJjZV_unU7NG90Tuc8vA2R4wyZrWR9PZkJ44lb3LSmbuYsf9Ci1u_q-oFzeLv9J0dxHSiI__Lkx80KoUpdTfbq60-szY3ae3l5qL3xCWmBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17302856</pqid></control><display><type>article</type><title>Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Felderhoff-Mueser, Ursula ; Sifringer, Marco ; Polley, Oliver ; Dzietko, Mark ; Leineweber, Birgit ; Mahler, Lieselotte ; Baier, Michael ; Bittigau, Petra ; Obladen, Michael ; Ikonomidou, Chrysanthy ; Bührer, Christoph</creator><creatorcontrib>Felderhoff-Mueser, Ursula ; Sifringer, Marco ; Polley, Oliver ; Dzietko, Mark ; Leineweber, Birgit ; Mahler, Lieselotte ; Baier, Michael ; Bittigau, Petra ; Obladen, Michael ; Ikonomidou, Chrysanthy ; Bührer, Christoph</creatorcontrib><description>Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase‐1–processed cytokines, interleukin (IL)–1β and IL‐18, are involved in oxygen‐induced neuronal cell death. Six‐day‐old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro‐Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL‐1β, IL‐18, and IL‐18 receptor α (IL‐18Rα). Intraperitoneal injection of recombinant human IL‐18–binding protein, a specific inhibitor of IL‐18, attenuated hyperoxic brain injury. Mice deficient in IL‐1 receptor–associated kinase 4 (IRAK‐4), which is pivotal for both IL‐1β and IL‐18 signal transduction, were protected against oxygen‐mediated neurotoxicity. These findings causally link IL‐1β and IL‐18 to hyperoxia‐induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen. Ann Neurol 2005;57:50–59</description><identifier>ISSN: 0364-5134</identifier><identifier>EISSN: 1531-8249</identifier><identifier>DOI: 10.1002/ana.20322</identifier><identifier>PMID: 15622543</identifier><identifier>CODEN: ANNED3</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Animals, Newborn ; Biological and medical sciences ; Blotting, Western - methods ; Brain - drug effects ; Brain - growth &amp; development ; Brain - pathology ; Caspase 1 - genetics ; Caspase 1 - metabolism ; Cell Death - physiology ; Development. Senescence. Regeneration. Transplantation ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Drug toxicity and drugs side effects treatment ; Fundamental and applied biological sciences. Psychology ; Hyperoxia - pathology ; Immunohistochemistry - methods ; In Situ Nick-End Labeling - methods ; Interleukin-1 - pharmacology ; Interleukin-1 Receptor-Associated Kinases ; Interleukin-18 - pharmacology ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nerve Degeneration - genetics ; Nerve Degeneration - metabolism ; Neurology ; Oxygen - toxicity ; Pharmacology. Drug treatments ; Phosphotransferases (Alcohol Group Acceptor) - deficiency ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Time Factors ; Toxicity: nervous system and muscle ; Vertebrates: nervous system and sense organs</subject><ispartof>Annals of neurology, 2005-01, Vol.57 (1), p.50-59</ispartof><rights>Copyright © 2004 American Neurological Association</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5232-6f9df1c8fc688a60d4f7bb5afead570b71b716426fd23e05c2b29b8d0409507c3</citedby><cites>FETCH-LOGICAL-c5232-6f9df1c8fc688a60d4f7bb5afead570b71b716426fd23e05c2b29b8d0409507c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fana.20322$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fana.20322$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16570585$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15622543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Felderhoff-Mueser, Ursula</creatorcontrib><creatorcontrib>Sifringer, Marco</creatorcontrib><creatorcontrib>Polley, Oliver</creatorcontrib><creatorcontrib>Dzietko, Mark</creatorcontrib><creatorcontrib>Leineweber, Birgit</creatorcontrib><creatorcontrib>Mahler, Lieselotte</creatorcontrib><creatorcontrib>Baier, Michael</creatorcontrib><creatorcontrib>Bittigau, Petra</creatorcontrib><creatorcontrib>Obladen, Michael</creatorcontrib><creatorcontrib>Ikonomidou, Chrysanthy</creatorcontrib><creatorcontrib>Bührer, Christoph</creatorcontrib><title>Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain</title><title>Annals of neurology</title><addtitle>Ann Neurol</addtitle><description>Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase‐1–processed cytokines, interleukin (IL)–1β and IL‐18, are involved in oxygen‐induced neuronal cell death. Six‐day‐old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro‐Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL‐1β, IL‐18, and IL‐18 receptor α (IL‐18Rα). Intraperitoneal injection of recombinant human IL‐18–binding protein, a specific inhibitor of IL‐18, attenuated hyperoxic brain injury. Mice deficient in IL‐1 receptor–associated kinase 4 (IRAK‐4), which is pivotal for both IL‐1β and IL‐18 signal transduction, were protected against oxygen‐mediated neurotoxicity. These findings causally link IL‐1β and IL‐18 to hyperoxia‐induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen. Ann Neurol 2005;57:50–59</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western - methods</subject><subject>Brain - drug effects</subject><subject>Brain - growth &amp; development</subject><subject>Brain - pathology</subject><subject>Caspase 1 - genetics</subject><subject>Caspase 1 - metabolism</subject><subject>Cell Death - physiology</subject><subject>Development. Senescence. Regeneration. Transplantation</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug toxicity and drugs side effects treatment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hyperoxia - pathology</subject><subject>Immunohistochemistry - methods</subject><subject>In Situ Nick-End Labeling - methods</subject><subject>Interleukin-1 - pharmacology</subject><subject>Interleukin-1 Receptor-Associated Kinases</subject><subject>Interleukin-18 - pharmacology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Nerve Degeneration - genetics</subject><subject>Nerve Degeneration - metabolism</subject><subject>Neurology</subject><subject>Oxygen - toxicity</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - deficiency</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Time Factors</subject><subject>Toxicity: nervous system and muscle</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0364-5134</issn><issn>1531-8249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFv1DAQha0K1C6lh_4BtJcicXA7tmMnOS4rWpCqghCIqhfLsces22wS7AS6_x4vu9AT0kij0Xwz7-kRcsrgnAHwC9OZcw6C8wMyY1IwWvGifkZmIFRBJRPFEXmR0j0A1IrBITliUnEuCzEjt0uTBpOQMjrE3mJK6OahGzG2OD2ELuVhvtoMGPvHYGjo3GQzYbFt5w7NuNruxxXm4Se2_RC67_MmmtC9JM-9aROe7Psx-Xr57svyPb3-ePVhubimVnLBqfK188xW3qqqMgpc4cumkcajcbKEpmS5VMGVd1wgSMsbXjeVgwJqCaUVx-T17m-2_2PCNOp1SFt7psN-SpqVAnglVQbf7EAb-5Qiej3EsDZxoxnobYw6x6j_xJjZV_unU7NG90Tuc8vA2R4wyZrWR9PZkJ44lb3LSmbuYsf9Ci1u_q-oFzeLv9J0dxHSiI__Lkx80KoUpdTfbq60-szY3ae3l5qL3xCWmBA</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Felderhoff-Mueser, Ursula</creator><creator>Sifringer, Marco</creator><creator>Polley, Oliver</creator><creator>Dzietko, Mark</creator><creator>Leineweber, Birgit</creator><creator>Mahler, Lieselotte</creator><creator>Baier, Michael</creator><creator>Bittigau, Petra</creator><creator>Obladen, Michael</creator><creator>Ikonomidou, Chrysanthy</creator><creator>Bührer, Christoph</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Willey-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200501</creationdate><title>Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain</title><author>Felderhoff-Mueser, Ursula ; Sifringer, Marco ; Polley, Oliver ; Dzietko, Mark ; Leineweber, Birgit ; Mahler, Lieselotte ; Baier, Michael ; Bittigau, Petra ; Obladen, Michael ; Ikonomidou, Chrysanthy ; Bührer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5232-6f9df1c8fc688a60d4f7bb5afead570b71b716426fd23e05c2b29b8d0409507c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western - methods</topic><topic>Brain - drug effects</topic><topic>Brain - growth &amp; development</topic><topic>Brain - pathology</topic><topic>Caspase 1 - genetics</topic><topic>Caspase 1 - metabolism</topic><topic>Cell Death - physiology</topic><topic>Development. Senescence. Regeneration. Transplantation</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug toxicity and drugs side effects treatment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hyperoxia - pathology</topic><topic>Immunohistochemistry - methods</topic><topic>In Situ Nick-End Labeling - methods</topic><topic>Interleukin-1 - pharmacology</topic><topic>Interleukin-1 Receptor-Associated Kinases</topic><topic>Interleukin-18 - pharmacology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Nerve Degeneration - genetics</topic><topic>Nerve Degeneration - metabolism</topic><topic>Neurology</topic><topic>Oxygen - toxicity</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - deficiency</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Time Factors</topic><topic>Toxicity: nervous system and muscle</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felderhoff-Mueser, Ursula</creatorcontrib><creatorcontrib>Sifringer, Marco</creatorcontrib><creatorcontrib>Polley, Oliver</creatorcontrib><creatorcontrib>Dzietko, Mark</creatorcontrib><creatorcontrib>Leineweber, Birgit</creatorcontrib><creatorcontrib>Mahler, Lieselotte</creatorcontrib><creatorcontrib>Baier, Michael</creatorcontrib><creatorcontrib>Bittigau, Petra</creatorcontrib><creatorcontrib>Obladen, Michael</creatorcontrib><creatorcontrib>Ikonomidou, Chrysanthy</creatorcontrib><creatorcontrib>Bührer, Christoph</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Annals of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felderhoff-Mueser, Ursula</au><au>Sifringer, Marco</au><au>Polley, Oliver</au><au>Dzietko, Mark</au><au>Leineweber, Birgit</au><au>Mahler, Lieselotte</au><au>Baier, Michael</au><au>Bittigau, Petra</au><au>Obladen, Michael</au><au>Ikonomidou, Chrysanthy</au><au>Bührer, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain</atitle><jtitle>Annals of neurology</jtitle><addtitle>Ann Neurol</addtitle><date>2005-01</date><risdate>2005</risdate><volume>57</volume><issue>1</issue><spage>50</spage><epage>59</epage><pages>50-59</pages><issn>0364-5134</issn><eissn>1531-8249</eissn><coden>ANNED3</coden><abstract>Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase‐1–processed cytokines, interleukin (IL)–1β and IL‐18, are involved in oxygen‐induced neuronal cell death. Six‐day‐old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro‐Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL‐1β, IL‐18, and IL‐18 receptor α (IL‐18Rα). Intraperitoneal injection of recombinant human IL‐18–binding protein, a specific inhibitor of IL‐18, attenuated hyperoxic brain injury. Mice deficient in IL‐1 receptor–associated kinase 4 (IRAK‐4), which is pivotal for both IL‐1β and IL‐18 signal transduction, were protected against oxygen‐mediated neurotoxicity. These findings causally link IL‐1β and IL‐18 to hyperoxia‐induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen. Ann Neurol 2005;57:50–59</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15622543</pmid><doi>10.1002/ana.20322</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-5134
ispartof Annals of neurology, 2005-01, Vol.57 (1), p.50-59
issn 0364-5134
1531-8249
language eng
recordid cdi_proquest_miscellaneous_17302856
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Animals, Newborn
Biological and medical sciences
Blotting, Western - methods
Brain - drug effects
Brain - growth & development
Brain - pathology
Caspase 1 - genetics
Caspase 1 - metabolism
Cell Death - physiology
Development. Senescence. Regeneration. Transplantation
Disease Models, Animal
Dose-Response Relationship, Drug
Drug toxicity and drugs side effects treatment
Fundamental and applied biological sciences. Psychology
Hyperoxia - pathology
Immunohistochemistry - methods
In Situ Nick-End Labeling - methods
Interleukin-1 - pharmacology
Interleukin-1 Receptor-Associated Kinases
Interleukin-18 - pharmacology
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Nerve Degeneration - genetics
Nerve Degeneration - metabolism
Neurology
Oxygen - toxicity
Pharmacology. Drug treatments
Phosphotransferases (Alcohol Group Acceptor) - deficiency
Rats
Rats, Wistar
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - metabolism
Time Factors
Toxicity: nervous system and muscle
Vertebrates: nervous system and sense organs
title Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caspase-1-processed%20interleukins%20in%20hyperoxia-induced%20cell%20death%20in%20the%20developing%20brain&rft.jtitle=Annals%20of%20neurology&rft.au=Felderhoff-Mueser,%20Ursula&rft.date=2005-01&rft.volume=57&rft.issue=1&rft.spage=50&rft.epage=59&rft.pages=50-59&rft.issn=0364-5134&rft.eissn=1531-8249&rft.coden=ANNED3&rft_id=info:doi/10.1002/ana.20322&rft_dat=%3Cproquest_cross%3E17302856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17302856&rft_id=info:pmid/15622543&rfr_iscdi=true