Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes

In modern turbine airfoils, narrow impingement cooling channels can be formed in a double-wall configuration. In these wall-integrated cooling cavities, the generated crossflow is one of the most important design factors, and hence, the number of impingement holes included in a channel. This study e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2015-08, Vol.229 (5), p.560-568
Hauptverfasser: Llucià, S, Terzis, A, Ott, P, Cochet, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue 5
container_start_page 560
container_title Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy
container_volume 229
creator Llucià, S
Terzis, A
Ott, P
Cochet, M
description In modern turbine airfoils, narrow impingement cooling channels can be formed in a double-wall configuration. In these wall-integrated cooling cavities, the generated crossflow is one of the most important design factors, and hence, the number of impingement holes included in a channel. This study examines experimentally the influence of the number of impingement holes on the heat transfer characteristics of narrow impingement channels. The channels consist of two rows of jets where the number of holes in the axial direction is varied from 5 to 10, maintaining the same jet plate open area. Local heat transfer coefficient distributions are obtained for all channel interior walls using the transient liquid crystal technique and over a range of Reynolds numbers (20,300–41,500). The results show an important heat transfer degradation at higher open areas and a small influence of the number of holes at upstream channel positions.
doi_str_mv 10.1177/0957650915594074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730122876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0957650915594074</sage_id><sourcerecordid>3776262101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-86beaddf9cb090f45e572aac454f1bc0d59ba33c25ac7255d5dd175c54c92f2f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM0ZiYQnYjq-u2VBVKFIlFpgjxzm3qRKn2I4Q_x6HMqBK3HLDfe_p3SPkmtE7xqS8pwrkDKhiAEpQKU7IhFPBcq5m8pRMxnM-3s_JRQg7mgYkn5ByhTpm0WsXLPrMbLXXJqJvQmxMyHqbbZvNNjO-D8G2_WfWdPvGbbBDF0faOWzDQ7a0Fk0ccTd0VTIahX2L4ZKcWd0GvPrdU_L-tHxbrPL16_PL4nGdm0LwmM9nFeq6tspUVFErAFM6rY0AYVllaA2q0kVhOGgjOUANdc0kGBBGccttMSW3B9-97z8GDLHsmmCwbbXDfgglkwVlnM_lLKE3R-iuH7xL6RJFC5hLxlSi6IH6ed2jLfe-6bT_Khktx8bL48aTJD9Igt7gH9P_-G_UJYD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703587119</pqid></control><display><type>article</type><title>Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes</title><source>SAGE Complete A-Z List</source><creator>Llucià, S ; Terzis, A ; Ott, P ; Cochet, M</creator><creatorcontrib>Llucià, S ; Terzis, A ; Ott, P ; Cochet, M</creatorcontrib><description>In modern turbine airfoils, narrow impingement cooling channels can be formed in a double-wall configuration. In these wall-integrated cooling cavities, the generated crossflow is one of the most important design factors, and hence, the number of impingement holes included in a channel. This study examines experimentally the influence of the number of impingement holes on the heat transfer characteristics of narrow impingement channels. The channels consist of two rows of jets where the number of holes in the axial direction is varied from 5 to 10, maintaining the same jet plate open area. Local heat transfer coefficient distributions are obtained for all channel interior walls using the transient liquid crystal technique and over a range of Reynolds numbers (20,300–41,500). The results show an important heat transfer degradation at higher open areas and a small influence of the number of holes at upstream channel positions.</description><identifier>ISSN: 0957-6509</identifier><identifier>EISSN: 2041-2967</identifier><identifier>DOI: 10.1177/0957650915594074</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Channels ; Cooling ; Fluid dynamics ; Heat transfer ; Heat transfer coefficients ; Holes ; Impingement ; Mechanical engineers ; Reynolds number ; Turbines ; Walls</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2015-08, Vol.229 (5), p.560-568</ispartof><rights>IMechE 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-86beaddf9cb090f45e572aac454f1bc0d59ba33c25ac7255d5dd175c54c92f2f3</citedby><cites>FETCH-LOGICAL-c342t-86beaddf9cb090f45e572aac454f1bc0d59ba33c25ac7255d5dd175c54c92f2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0957650915594074$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0957650915594074$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Llucià, S</creatorcontrib><creatorcontrib>Terzis, A</creatorcontrib><creatorcontrib>Ott, P</creatorcontrib><creatorcontrib>Cochet, M</creatorcontrib><title>Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes</title><title>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</title><description>In modern turbine airfoils, narrow impingement cooling channels can be formed in a double-wall configuration. In these wall-integrated cooling cavities, the generated crossflow is one of the most important design factors, and hence, the number of impingement holes included in a channel. This study examines experimentally the influence of the number of impingement holes on the heat transfer characteristics of narrow impingement channels. The channels consist of two rows of jets where the number of holes in the axial direction is varied from 5 to 10, maintaining the same jet plate open area. Local heat transfer coefficient distributions are obtained for all channel interior walls using the transient liquid crystal technique and over a range of Reynolds numbers (20,300–41,500). The results show an important heat transfer degradation at higher open areas and a small influence of the number of holes at upstream channel positions.</description><subject>Channels</subject><subject>Cooling</subject><subject>Fluid dynamics</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Holes</subject><subject>Impingement</subject><subject>Mechanical engineers</subject><subject>Reynolds number</subject><subject>Turbines</subject><subject>Walls</subject><issn>0957-6509</issn><issn>2041-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM0ZiYQnYjq-u2VBVKFIlFpgjxzm3qRKn2I4Q_x6HMqBK3HLDfe_p3SPkmtE7xqS8pwrkDKhiAEpQKU7IhFPBcq5m8pRMxnM-3s_JRQg7mgYkn5ByhTpm0WsXLPrMbLXXJqJvQmxMyHqbbZvNNjO-D8G2_WfWdPvGbbBDF0faOWzDQ7a0Fk0ccTd0VTIahX2L4ZKcWd0GvPrdU_L-tHxbrPL16_PL4nGdm0LwmM9nFeq6tspUVFErAFM6rY0AYVllaA2q0kVhOGgjOUANdc0kGBBGccttMSW3B9-97z8GDLHsmmCwbbXDfgglkwVlnM_lLKE3R-iuH7xL6RJFC5hLxlSi6IH6ed2jLfe-6bT_Khktx8bL48aTJD9Igt7gH9P_-G_UJYD8</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Llucià, S</creator><creator>Terzis, A</creator><creator>Ott, P</creator><creator>Cochet, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7SU</scope><scope>C1K</scope><scope>H8D</scope></search><sort><creationdate>20150801</creationdate><title>Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes</title><author>Llucià, S ; Terzis, A ; Ott, P ; Cochet, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-86beaddf9cb090f45e572aac454f1bc0d59ba33c25ac7255d5dd175c54c92f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Channels</topic><topic>Cooling</topic><topic>Fluid dynamics</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Holes</topic><topic>Impingement</topic><topic>Mechanical engineers</topic><topic>Reynolds number</topic><topic>Turbines</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llucià, S</creatorcontrib><creatorcontrib>Terzis, A</creatorcontrib><creatorcontrib>Ott, P</creatorcontrib><creatorcontrib>Cochet, M</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Aerospace Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llucià, S</au><au>Terzis, A</au><au>Ott, P</au><au>Cochet, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>229</volume><issue>5</issue><spage>560</spage><epage>568</epage><pages>560-568</pages><issn>0957-6509</issn><eissn>2041-2967</eissn><abstract>In modern turbine airfoils, narrow impingement cooling channels can be formed in a double-wall configuration. In these wall-integrated cooling cavities, the generated crossflow is one of the most important design factors, and hence, the number of impingement holes included in a channel. This study examines experimentally the influence of the number of impingement holes on the heat transfer characteristics of narrow impingement channels. The channels consist of two rows of jets where the number of holes in the axial direction is varied from 5 to 10, maintaining the same jet plate open area. Local heat transfer coefficient distributions are obtained for all channel interior walls using the transient liquid crystal technique and over a range of Reynolds numbers (20,300–41,500). The results show an important heat transfer degradation at higher open areas and a small influence of the number of holes at upstream channel positions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0957650915594074</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-6509
ispartof Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2015-08, Vol.229 (5), p.560-568
issn 0957-6509
2041-2967
language eng
recordid cdi_proquest_miscellaneous_1730122876
source SAGE Complete A-Z List
subjects Channels
Cooling
Fluid dynamics
Heat transfer
Heat transfer coefficients
Holes
Impingement
Mechanical engineers
Reynolds number
Turbines
Walls
title Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20characteristics%20of%20high%20crossflow%20impingement%20channels:%20Effect%20of%20number%20of%20holes&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20A,%20Journal%20of%20power%20and%20energy&rft.au=Lluci%C3%A0,%20S&rft.date=2015-08-01&rft.volume=229&rft.issue=5&rft.spage=560&rft.epage=568&rft.pages=560-568&rft.issn=0957-6509&rft.eissn=2041-2967&rft_id=info:doi/10.1177/0957650915594074&rft_dat=%3Cproquest_cross%3E3776262101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703587119&rft_id=info:pmid/&rft_sage_id=10.1177_0957650915594074&rfr_iscdi=true