A microfluidic direct formate fuel cell on paper
We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. Howev...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2015-08, Vol.36 (16), p.1825-1829 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1829 |
---|---|
container_issue | 16 |
container_start_page | 1825 |
container_title | Electrophoresis |
container_volume | 36 |
creator | Copenhaver, Thomas S. Purohit, Krutarth H. Domalaon, Kryls Pham, Linda Burgess, Brianna J. Manorothkul, Natalie Galvan, Vicente Sotez, Samantha Gomez, Frank A. Haan, John L. |
description | We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors. |
doi_str_mv | 10.1002/elps.201400554 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730121510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730121510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK1ePUrAi5fU2e_0WEqtlqKCSsXLsk12ITVp4m6D9t-7obUHL3oaGJ73ZeZB6BxDHwOQa1PUvk8AMwDO2QHqYk5ITERCD1EXsKQxJJR30In3SwBgA8aOUYcEVkiALoJhVOapq2zR5FmeRlnuTLqObOVKvTaRbUwRpaYoomoV1bo27hQdWV14c7abPfRyM34e3cazh8ndaDiLUw6DcIG03JIEUgKJ5ELTAaFAiZYUW5PJdCGklBwkN5rZhLKF1UnYiUwswICltIeutr21qz4a49eqzH17iV6ZqvEqvAaYYI7hHyjwQHPBAnr5C11WjVuFRxQBEYxiytrC_pYKYrx3xqra5aV2G4VBtdpVq13ttYfAxa62WZQm2-M_ngPAtsBnXpjNH3VqPHt84q2xHoq3sdyvzdc-pt27EpJKrub3EzV9w_J1MMdqSr8B5P-ZFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061001340</pqid></control><display><type>article</type><title>A microfluidic direct formate fuel cell on paper</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Copenhaver, Thomas S. ; Purohit, Krutarth H. ; Domalaon, Kryls ; Pham, Linda ; Burgess, Brianna J. ; Manorothkul, Natalie ; Galvan, Vicente ; Sotez, Samantha ; Gomez, Frank A. ; Haan, John L.</creator><creatorcontrib>Copenhaver, Thomas S. ; Purohit, Krutarth H. ; Domalaon, Kryls ; Pham, Linda ; Burgess, Brianna J. ; Manorothkul, Natalie ; Galvan, Vicente ; Sotez, Samantha ; Gomez, Frank A. ; Haan, John L.</creatorcontrib><description>We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201400554</identifier><identifier>PMID: 25546700</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Anodes ; Capillary flow ; Chemical sensors ; Configurations ; Continuous flow ; Diagnostic software ; Diagnostic systems ; Electric Power Supplies ; Electrochemical sensor ; Electrochemical Techniques - instrumentation ; Electrolytic cells ; Equipment Design ; Formate oxidation ; Formates ; Formates - chemistry ; Fuel cells ; Fuels ; Hydrogen peroxide ; Laminar flow ; Maximum power density ; Methanol ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic fuel cell ; Microfluidics ; Open circuit voltage ; Oxidants ; Oxidation-Reduction ; Oxidizing agents ; Paper microfluidics ; Point-of-care diagnostic devices ; Point-of-Care Systems ; Power consumption ; Short circuits ; Streams</subject><ispartof>Electrophoresis, 2015-08, Vol.36 (16), p.1825-1829</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</citedby><cites>FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201400554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201400554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25546700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Copenhaver, Thomas S.</creatorcontrib><creatorcontrib>Purohit, Krutarth H.</creatorcontrib><creatorcontrib>Domalaon, Kryls</creatorcontrib><creatorcontrib>Pham, Linda</creatorcontrib><creatorcontrib>Burgess, Brianna J.</creatorcontrib><creatorcontrib>Manorothkul, Natalie</creatorcontrib><creatorcontrib>Galvan, Vicente</creatorcontrib><creatorcontrib>Sotez, Samantha</creatorcontrib><creatorcontrib>Gomez, Frank A.</creatorcontrib><creatorcontrib>Haan, John L.</creatorcontrib><title>A microfluidic direct formate fuel cell on paper</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.</description><subject>Anodes</subject><subject>Capillary flow</subject><subject>Chemical sensors</subject><subject>Configurations</subject><subject>Continuous flow</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Electric Power Supplies</subject><subject>Electrochemical sensor</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrolytic cells</subject><subject>Equipment Design</subject><subject>Formate oxidation</subject><subject>Formates</subject><subject>Formates - chemistry</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydrogen peroxide</subject><subject>Laminar flow</subject><subject>Maximum power density</subject><subject>Methanol</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic fuel cell</subject><subject>Microfluidics</subject><subject>Open circuit voltage</subject><subject>Oxidants</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Paper microfluidics</subject><subject>Point-of-care diagnostic devices</subject><subject>Point-of-Care Systems</subject><subject>Power consumption</subject><subject>Short circuits</subject><subject>Streams</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQhhdRbK1ePUrAi5fU2e_0WEqtlqKCSsXLsk12ITVp4m6D9t-7obUHL3oaGJ73ZeZB6BxDHwOQa1PUvk8AMwDO2QHqYk5ITERCD1EXsKQxJJR30In3SwBgA8aOUYcEVkiALoJhVOapq2zR5FmeRlnuTLqObOVKvTaRbUwRpaYoomoV1bo27hQdWV14c7abPfRyM34e3cazh8ndaDiLUw6DcIG03JIEUgKJ5ELTAaFAiZYUW5PJdCGklBwkN5rZhLKF1UnYiUwswICltIeutr21qz4a49eqzH17iV6ZqvEqvAaYYI7hHyjwQHPBAnr5C11WjVuFRxQBEYxiytrC_pYKYrx3xqra5aV2G4VBtdpVq13ttYfAxa62WZQm2-M_ngPAtsBnXpjNH3VqPHt84q2xHoq3sdyvzdc-pt27EpJKrub3EzV9w_J1MMdqSr8B5P-ZFA</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Copenhaver, Thomas S.</creator><creator>Purohit, Krutarth H.</creator><creator>Domalaon, Kryls</creator><creator>Pham, Linda</creator><creator>Burgess, Brianna J.</creator><creator>Manorothkul, Natalie</creator><creator>Galvan, Vicente</creator><creator>Sotez, Samantha</creator><creator>Gomez, Frank A.</creator><creator>Haan, John L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>201508</creationdate><title>A microfluidic direct formate fuel cell on paper</title><author>Copenhaver, Thomas S. ; Purohit, Krutarth H. ; Domalaon, Kryls ; Pham, Linda ; Burgess, Brianna J. ; Manorothkul, Natalie ; Galvan, Vicente ; Sotez, Samantha ; Gomez, Frank A. ; Haan, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Capillary flow</topic><topic>Chemical sensors</topic><topic>Configurations</topic><topic>Continuous flow</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Electric Power Supplies</topic><topic>Electrochemical sensor</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrolytic cells</topic><topic>Equipment Design</topic><topic>Formate oxidation</topic><topic>Formates</topic><topic>Formates - chemistry</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydrogen peroxide</topic><topic>Laminar flow</topic><topic>Maximum power density</topic><topic>Methanol</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic fuel cell</topic><topic>Microfluidics</topic><topic>Open circuit voltage</topic><topic>Oxidants</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Paper microfluidics</topic><topic>Point-of-care diagnostic devices</topic><topic>Point-of-Care Systems</topic><topic>Power consumption</topic><topic>Short circuits</topic><topic>Streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copenhaver, Thomas S.</creatorcontrib><creatorcontrib>Purohit, Krutarth H.</creatorcontrib><creatorcontrib>Domalaon, Kryls</creatorcontrib><creatorcontrib>Pham, Linda</creatorcontrib><creatorcontrib>Burgess, Brianna J.</creatorcontrib><creatorcontrib>Manorothkul, Natalie</creatorcontrib><creatorcontrib>Galvan, Vicente</creatorcontrib><creatorcontrib>Sotez, Samantha</creatorcontrib><creatorcontrib>Gomez, Frank A.</creatorcontrib><creatorcontrib>Haan, John L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copenhaver, Thomas S.</au><au>Purohit, Krutarth H.</au><au>Domalaon, Kryls</au><au>Pham, Linda</au><au>Burgess, Brianna J.</au><au>Manorothkul, Natalie</au><au>Galvan, Vicente</au><au>Sotez, Samantha</au><au>Gomez, Frank A.</au><au>Haan, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfluidic direct formate fuel cell on paper</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2015-08</date><risdate>2015</risdate><volume>36</volume><issue>16</issue><spage>1825</spage><epage>1829</epage><pages>1825-1829</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25546700</pmid><doi>10.1002/elps.201400554</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2015-08, Vol.36 (16), p.1825-1829 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730121510 |
source | MEDLINE; Wiley Journals |
subjects | Anodes Capillary flow Chemical sensors Configurations Continuous flow Diagnostic software Diagnostic systems Electric Power Supplies Electrochemical sensor Electrochemical Techniques - instrumentation Electrolytic cells Equipment Design Formate oxidation Formates Formates - chemistry Fuel cells Fuels Hydrogen peroxide Laminar flow Maximum power density Methanol Microfluidic Analytical Techniques - instrumentation Microfluidic fuel cell Microfluidics Open circuit voltage Oxidants Oxidation-Reduction Oxidizing agents Paper microfluidics Point-of-care diagnostic devices Point-of-Care Systems Power consumption Short circuits Streams |
title | A microfluidic direct formate fuel cell on paper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfluidic%20direct%20formate%20fuel%20cell%20on%20paper&rft.jtitle=Electrophoresis&rft.au=Copenhaver,%20Thomas%20S.&rft.date=2015-08&rft.volume=36&rft.issue=16&rft.spage=1825&rft.epage=1829&rft.pages=1825-1829&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201400554&rft_dat=%3Cproquest_cross%3E1730121510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061001340&rft_id=info:pmid/25546700&rfr_iscdi=true |