A microfluidic direct formate fuel cell on paper

We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2015-08, Vol.36 (16), p.1825-1829
Hauptverfasser: Copenhaver, Thomas S., Purohit, Krutarth H., Domalaon, Kryls, Pham, Linda, Burgess, Brianna J., Manorothkul, Natalie, Galvan, Vicente, Sotez, Samantha, Gomez, Frank A., Haan, John L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1829
container_issue 16
container_start_page 1825
container_title Electrophoresis
container_volume 36
creator Copenhaver, Thomas S.
Purohit, Krutarth H.
Domalaon, Kryls
Pham, Linda
Burgess, Brianna J.
Manorothkul, Natalie
Galvan, Vicente
Sotez, Samantha
Gomez, Frank A.
Haan, John L.
description We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.
doi_str_mv 10.1002/elps.201400554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730121510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730121510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK1ePUrAi5fU2e_0WEqtlqKCSsXLsk12ITVp4m6D9t-7obUHL3oaGJ73ZeZB6BxDHwOQa1PUvk8AMwDO2QHqYk5ITERCD1EXsKQxJJR30In3SwBgA8aOUYcEVkiALoJhVOapq2zR5FmeRlnuTLqObOVKvTaRbUwRpaYoomoV1bo27hQdWV14c7abPfRyM34e3cazh8ndaDiLUw6DcIG03JIEUgKJ5ELTAaFAiZYUW5PJdCGklBwkN5rZhLKF1UnYiUwswICltIeutr21qz4a49eqzH17iV6ZqvEqvAaYYI7hHyjwQHPBAnr5C11WjVuFRxQBEYxiytrC_pYKYrx3xqra5aV2G4VBtdpVq13ttYfAxa62WZQm2-M_ngPAtsBnXpjNH3VqPHt84q2xHoq3sdyvzdc-pt27EpJKrub3EzV9w_J1MMdqSr8B5P-ZFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061001340</pqid></control><display><type>article</type><title>A microfluidic direct formate fuel cell on paper</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Copenhaver, Thomas S. ; Purohit, Krutarth H. ; Domalaon, Kryls ; Pham, Linda ; Burgess, Brianna J. ; Manorothkul, Natalie ; Galvan, Vicente ; Sotez, Samantha ; Gomez, Frank A. ; Haan, John L.</creator><creatorcontrib>Copenhaver, Thomas S. ; Purohit, Krutarth H. ; Domalaon, Kryls ; Pham, Linda ; Burgess, Brianna J. ; Manorothkul, Natalie ; Galvan, Vicente ; Sotez, Samantha ; Gomez, Frank A. ; Haan, John L.</creatorcontrib><description>We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201400554</identifier><identifier>PMID: 25546700</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Anodes ; Capillary flow ; Chemical sensors ; Configurations ; Continuous flow ; Diagnostic software ; Diagnostic systems ; Electric Power Supplies ; Electrochemical sensor ; Electrochemical Techniques - instrumentation ; Electrolytic cells ; Equipment Design ; Formate oxidation ; Formates ; Formates - chemistry ; Fuel cells ; Fuels ; Hydrogen peroxide ; Laminar flow ; Maximum power density ; Methanol ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic fuel cell ; Microfluidics ; Open circuit voltage ; Oxidants ; Oxidation-Reduction ; Oxidizing agents ; Paper microfluidics ; Point-of-care diagnostic devices ; Point-of-Care Systems ; Power consumption ; Short circuits ; Streams</subject><ispartof>Electrophoresis, 2015-08, Vol.36 (16), p.1825-1829</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</citedby><cites>FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201400554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201400554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25546700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Copenhaver, Thomas S.</creatorcontrib><creatorcontrib>Purohit, Krutarth H.</creatorcontrib><creatorcontrib>Domalaon, Kryls</creatorcontrib><creatorcontrib>Pham, Linda</creatorcontrib><creatorcontrib>Burgess, Brianna J.</creatorcontrib><creatorcontrib>Manorothkul, Natalie</creatorcontrib><creatorcontrib>Galvan, Vicente</creatorcontrib><creatorcontrib>Sotez, Samantha</creatorcontrib><creatorcontrib>Gomez, Frank A.</creatorcontrib><creatorcontrib>Haan, John L.</creatorcontrib><title>A microfluidic direct formate fuel cell on paper</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.</description><subject>Anodes</subject><subject>Capillary flow</subject><subject>Chemical sensors</subject><subject>Configurations</subject><subject>Continuous flow</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Electric Power Supplies</subject><subject>Electrochemical sensor</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrolytic cells</subject><subject>Equipment Design</subject><subject>Formate oxidation</subject><subject>Formates</subject><subject>Formates - chemistry</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydrogen peroxide</subject><subject>Laminar flow</subject><subject>Maximum power density</subject><subject>Methanol</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic fuel cell</subject><subject>Microfluidics</subject><subject>Open circuit voltage</subject><subject>Oxidants</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Paper microfluidics</subject><subject>Point-of-care diagnostic devices</subject><subject>Point-of-Care Systems</subject><subject>Power consumption</subject><subject>Short circuits</subject><subject>Streams</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQhhdRbK1ePUrAi5fU2e_0WEqtlqKCSsXLsk12ITVp4m6D9t-7obUHL3oaGJ73ZeZB6BxDHwOQa1PUvk8AMwDO2QHqYk5ITERCD1EXsKQxJJR30In3SwBgA8aOUYcEVkiALoJhVOapq2zR5FmeRlnuTLqObOVKvTaRbUwRpaYoomoV1bo27hQdWV14c7abPfRyM34e3cazh8ndaDiLUw6DcIG03JIEUgKJ5ELTAaFAiZYUW5PJdCGklBwkN5rZhLKF1UnYiUwswICltIeutr21qz4a49eqzH17iV6ZqvEqvAaYYI7hHyjwQHPBAnr5C11WjVuFRxQBEYxiytrC_pYKYrx3xqra5aV2G4VBtdpVq13ttYfAxa62WZQm2-M_ngPAtsBnXpjNH3VqPHt84q2xHoq3sdyvzdc-pt27EpJKrub3EzV9w_J1MMdqSr8B5P-ZFA</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Copenhaver, Thomas S.</creator><creator>Purohit, Krutarth H.</creator><creator>Domalaon, Kryls</creator><creator>Pham, Linda</creator><creator>Burgess, Brianna J.</creator><creator>Manorothkul, Natalie</creator><creator>Galvan, Vicente</creator><creator>Sotez, Samantha</creator><creator>Gomez, Frank A.</creator><creator>Haan, John L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>201508</creationdate><title>A microfluidic direct formate fuel cell on paper</title><author>Copenhaver, Thomas S. ; Purohit, Krutarth H. ; Domalaon, Kryls ; Pham, Linda ; Burgess, Brianna J. ; Manorothkul, Natalie ; Galvan, Vicente ; Sotez, Samantha ; Gomez, Frank A. ; Haan, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-27f5f280c208756a3923032a731fed7cb67775075ea4f834bfa8b676d6b0e0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Capillary flow</topic><topic>Chemical sensors</topic><topic>Configurations</topic><topic>Continuous flow</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Electric Power Supplies</topic><topic>Electrochemical sensor</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrolytic cells</topic><topic>Equipment Design</topic><topic>Formate oxidation</topic><topic>Formates</topic><topic>Formates - chemistry</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydrogen peroxide</topic><topic>Laminar flow</topic><topic>Maximum power density</topic><topic>Methanol</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic fuel cell</topic><topic>Microfluidics</topic><topic>Open circuit voltage</topic><topic>Oxidants</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Paper microfluidics</topic><topic>Point-of-care diagnostic devices</topic><topic>Point-of-Care Systems</topic><topic>Power consumption</topic><topic>Short circuits</topic><topic>Streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copenhaver, Thomas S.</creatorcontrib><creatorcontrib>Purohit, Krutarth H.</creatorcontrib><creatorcontrib>Domalaon, Kryls</creatorcontrib><creatorcontrib>Pham, Linda</creatorcontrib><creatorcontrib>Burgess, Brianna J.</creatorcontrib><creatorcontrib>Manorothkul, Natalie</creatorcontrib><creatorcontrib>Galvan, Vicente</creatorcontrib><creatorcontrib>Sotez, Samantha</creatorcontrib><creatorcontrib>Gomez, Frank A.</creatorcontrib><creatorcontrib>Haan, John L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copenhaver, Thomas S.</au><au>Purohit, Krutarth H.</au><au>Domalaon, Kryls</au><au>Pham, Linda</au><au>Burgess, Brianna J.</au><au>Manorothkul, Natalie</au><au>Galvan, Vicente</au><au>Sotez, Samantha</au><au>Gomez, Frank A.</au><au>Haan, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfluidic direct formate fuel cell on paper</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2015-08</date><risdate>2015</risdate><volume>36</volume><issue>16</issue><spage>1825</spage><epage>1829</epage><pages>1825-1829</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane‐less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co‐laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre‐saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point‐of‐care diagnostic devices and other electrochemical sensors.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25546700</pmid><doi>10.1002/elps.201400554</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2015-08, Vol.36 (16), p.1825-1829
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_1730121510
source MEDLINE; Wiley Journals
subjects Anodes
Capillary flow
Chemical sensors
Configurations
Continuous flow
Diagnostic software
Diagnostic systems
Electric Power Supplies
Electrochemical sensor
Electrochemical Techniques - instrumentation
Electrolytic cells
Equipment Design
Formate oxidation
Formates
Formates - chemistry
Fuel cells
Fuels
Hydrogen peroxide
Laminar flow
Maximum power density
Methanol
Microfluidic Analytical Techniques - instrumentation
Microfluidic fuel cell
Microfluidics
Open circuit voltage
Oxidants
Oxidation-Reduction
Oxidizing agents
Paper microfluidics
Point-of-care diagnostic devices
Point-of-Care Systems
Power consumption
Short circuits
Streams
title A microfluidic direct formate fuel cell on paper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfluidic%20direct%20formate%20fuel%20cell%20on%20paper&rft.jtitle=Electrophoresis&rft.au=Copenhaver,%20Thomas%20S.&rft.date=2015-08&rft.volume=36&rft.issue=16&rft.spage=1825&rft.epage=1829&rft.pages=1825-1829&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201400554&rft_dat=%3Cproquest_cross%3E1730121510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061001340&rft_id=info:pmid/25546700&rfr_iscdi=true