Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor
Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtur...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2015-08, Vol.29 (8), p.442-447 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 8 |
container_start_page | 442 |
container_title | Journal of chemometrics |
container_volume | 29 |
creator | Yang, Ruifang Zhao, Nanjing Xiao, Xue Yu, Shaohui Liu, Jianguo Liu, Wenqing |
description | Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley & Sons, Ltd.
Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms. |
doi_str_mv | 10.1002/cem.2723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730120677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791568411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</originalsourceid><addsrcrecordid>eNp1kEtLLDEQRoNcwbkq-BMCbtz0mHTSnfTSGbyj4GMjjrsQ05Ux2pOMSff18euNjCgKroqiTh2qPoT2KBlTQspDA8txKUq2gUaUNE1BS3nzB42IlHXRMMm20N-U7gnJM8ZHqJt0zrc4wUpH3bvgcbDYdkOIkAx4AzitwPRR4yE5v8idjgmwD77wsMgb_wEvdR_dM7ba9CG61w-Nx9Et7np8p7N_PdtBm1Z3CXY_6ja6-nd8NT0pzi5np9Ojs8Jwxllxe8tkKQ1pqQAJkrU1hZoSSUtuy9aAri03wHVVa9tUDHjLG20tqazkVUXZNjpYa1cxPA6QerV0-Zmu0x7CkBQVjNCS1EJkdP8Heh-G6PNxmSIyxySI-BKaGFKKYNUquqWOL4oS9Z66yqmr99QzWqzRJ9fBy6-cmh6ff-dd6uH5k9fxQdWCiUrNL2ZqOrueXDeTuZqzN-vmk74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708000707</pqid></control><display><type>article</type><title>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</title><source>Access via Wiley Online Library</source><creator>Yang, Ruifang ; Zhao, Nanjing ; Xiao, Xue ; Yu, Shaohui ; Liu, Jianguo ; Liu, Wenqing</creator><creatorcontrib>Yang, Ruifang ; Zhao, Nanjing ; Xiao, Xue ; Yu, Shaohui ; Liu, Jianguo ; Liu, Wenqing</creatorcontrib><description>Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley & Sons, Ltd.
Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2723</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Algorithms ; component recognition ; Factorization ; Fluorescence ; Lakes ; Matrix ; Polycyclic aromatic hydrocarbons ; Rivers ; sparse non-negative matrix factorization ; Spectra ; Three dimensional ; three-dimensional fluorescence spectra</subject><ispartof>Journal of chemometrics, 2015-08, Vol.29 (8), p.442-447</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</citedby><cites>FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Ruifang</creatorcontrib><creatorcontrib>Zhao, Nanjing</creatorcontrib><creatorcontrib>Xiao, Xue</creatorcontrib><creatorcontrib>Yu, Shaohui</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><title>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley & Sons, Ltd.
Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.</description><subject>Algorithms</subject><subject>component recognition</subject><subject>Factorization</subject><subject>Fluorescence</subject><subject>Lakes</subject><subject>Matrix</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Rivers</subject><subject>sparse non-negative matrix factorization</subject><subject>Spectra</subject><subject>Three dimensional</subject><subject>three-dimensional fluorescence spectra</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLLDEQRoNcwbkq-BMCbtz0mHTSnfTSGbyj4GMjjrsQ05Ux2pOMSff18euNjCgKroqiTh2qPoT2KBlTQspDA8txKUq2gUaUNE1BS3nzB42IlHXRMMm20N-U7gnJM8ZHqJt0zrc4wUpH3bvgcbDYdkOIkAx4AzitwPRR4yE5v8idjgmwD77wsMgb_wEvdR_dM7ba9CG61w-Nx9Et7np8p7N_PdtBm1Z3CXY_6ja6-nd8NT0pzi5np9Ojs8Jwxllxe8tkKQ1pqQAJkrU1hZoSSUtuy9aAri03wHVVa9tUDHjLG20tqazkVUXZNjpYa1cxPA6QerV0-Zmu0x7CkBQVjNCS1EJkdP8Heh-G6PNxmSIyxySI-BKaGFKKYNUquqWOL4oS9Z66yqmr99QzWqzRJ9fBy6-cmh6ff-dd6uH5k9fxQdWCiUrNL2ZqOrueXDeTuZqzN-vmk74</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Yang, Ruifang</creator><creator>Zhao, Nanjing</creator><creator>Xiao, Xue</creator><creator>Yu, Shaohui</creator><creator>Liu, Jianguo</creator><creator>Liu, Wenqing</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201508</creationdate><title>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</title><author>Yang, Ruifang ; Zhao, Nanjing ; Xiao, Xue ; Yu, Shaohui ; Liu, Jianguo ; Liu, Wenqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>component recognition</topic><topic>Factorization</topic><topic>Fluorescence</topic><topic>Lakes</topic><topic>Matrix</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Rivers</topic><topic>sparse non-negative matrix factorization</topic><topic>Spectra</topic><topic>Three dimensional</topic><topic>three-dimensional fluorescence spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ruifang</creatorcontrib><creatorcontrib>Zhao, Nanjing</creatorcontrib><creatorcontrib>Xiao, Xue</creatorcontrib><creatorcontrib>Yu, Shaohui</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ruifang</au><au>Zhao, Nanjing</au><au>Xiao, Xue</au><au>Yu, Shaohui</au><au>Liu, Jianguo</au><au>Liu, Wenqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2015-08</date><risdate>2015</risdate><volume>29</volume><issue>8</issue><spage>442</spage><epage>447</epage><pages>442-447</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley & Sons, Ltd.
Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2723</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2015-08, Vol.29 (8), p.442-447 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_miscellaneous_1730120677 |
source | Access via Wiley Online Library |
subjects | Algorithms component recognition Factorization Fluorescence Lakes Matrix Polycyclic aromatic hydrocarbons Rivers sparse non-negative matrix factorization Spectra Three dimensional three-dimensional fluorescence spectra |
title | Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20separation%20of%20fluorescence%20spectra%20using%20sparse%20non-negative%20matrix%20factorization%20on%20right%20hand%20factor&rft.jtitle=Journal%20of%20chemometrics&rft.au=Yang,%20Ruifang&rft.date=2015-08&rft.volume=29&rft.issue=8&rft.spage=442&rft.epage=447&rft.pages=442-447&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2723&rft_dat=%3Cproquest_cross%3E3791568411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708000707&rft_id=info:pmid/&rfr_iscdi=true |