Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor

Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2015-08, Vol.29 (8), p.442-447
Hauptverfasser: Yang, Ruifang, Zhao, Nanjing, Xiao, Xue, Yu, Shaohui, Liu, Jianguo, Liu, Wenqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 8
container_start_page 442
container_title Journal of chemometrics
container_volume 29
creator Yang, Ruifang
Zhao, Nanjing
Xiao, Xue
Yu, Shaohui
Liu, Jianguo
Liu, Wenqing
description Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley & Sons, Ltd. Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.
doi_str_mv 10.1002/cem.2723
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730120677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791568411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</originalsourceid><addsrcrecordid>eNp1kEtLLDEQRoNcwbkq-BMCbtz0mHTSnfTSGbyj4GMjjrsQ05Ux2pOMSff18euNjCgKroqiTh2qPoT2KBlTQspDA8txKUq2gUaUNE1BS3nzB42IlHXRMMm20N-U7gnJM8ZHqJt0zrc4wUpH3bvgcbDYdkOIkAx4AzitwPRR4yE5v8idjgmwD77wsMgb_wEvdR_dM7ba9CG61w-Nx9Et7np8p7N_PdtBm1Z3CXY_6ja6-nd8NT0pzi5np9Ojs8Jwxllxe8tkKQ1pqQAJkrU1hZoSSUtuy9aAri03wHVVa9tUDHjLG20tqazkVUXZNjpYa1cxPA6QerV0-Zmu0x7CkBQVjNCS1EJkdP8Heh-G6PNxmSIyxySI-BKaGFKKYNUquqWOL4oS9Z66yqmr99QzWqzRJ9fBy6-cmh6ff-dd6uH5k9fxQdWCiUrNL2ZqOrueXDeTuZqzN-vmk74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708000707</pqid></control><display><type>article</type><title>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</title><source>Access via Wiley Online Library</source><creator>Yang, Ruifang ; Zhao, Nanjing ; Xiao, Xue ; Yu, Shaohui ; Liu, Jianguo ; Liu, Wenqing</creator><creatorcontrib>Yang, Ruifang ; Zhao, Nanjing ; Xiao, Xue ; Yu, Shaohui ; Liu, Jianguo ; Liu, Wenqing</creatorcontrib><description>Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley &amp; Sons, Ltd. Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2723</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Algorithms ; component recognition ; Factorization ; Fluorescence ; Lakes ; Matrix ; Polycyclic aromatic hydrocarbons ; Rivers ; sparse non-negative matrix factorization ; Spectra ; Three dimensional ; three-dimensional fluorescence spectra</subject><ispartof>Journal of chemometrics, 2015-08, Vol.29 (8), p.442-447</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</citedby><cites>FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Ruifang</creatorcontrib><creatorcontrib>Zhao, Nanjing</creatorcontrib><creatorcontrib>Xiao, Xue</creatorcontrib><creatorcontrib>Yu, Shaohui</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><title>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley &amp; Sons, Ltd. Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.</description><subject>Algorithms</subject><subject>component recognition</subject><subject>Factorization</subject><subject>Fluorescence</subject><subject>Lakes</subject><subject>Matrix</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Rivers</subject><subject>sparse non-negative matrix factorization</subject><subject>Spectra</subject><subject>Three dimensional</subject><subject>three-dimensional fluorescence spectra</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLLDEQRoNcwbkq-BMCbtz0mHTSnfTSGbyj4GMjjrsQ05Ux2pOMSff18euNjCgKroqiTh2qPoT2KBlTQspDA8txKUq2gUaUNE1BS3nzB42IlHXRMMm20N-U7gnJM8ZHqJt0zrc4wUpH3bvgcbDYdkOIkAx4AzitwPRR4yE5v8idjgmwD77wsMgb_wEvdR_dM7ba9CG61w-Nx9Et7np8p7N_PdtBm1Z3CXY_6ja6-nd8NT0pzi5np9Ojs8Jwxllxe8tkKQ1pqQAJkrU1hZoSSUtuy9aAri03wHVVa9tUDHjLG20tqazkVUXZNjpYa1cxPA6QerV0-Zmu0x7CkBQVjNCS1EJkdP8Heh-G6PNxmSIyxySI-BKaGFKKYNUquqWOL4oS9Z66yqmr99QzWqzRJ9fBy6-cmh6ff-dd6uH5k9fxQdWCiUrNL2ZqOrueXDeTuZqzN-vmk74</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Yang, Ruifang</creator><creator>Zhao, Nanjing</creator><creator>Xiao, Xue</creator><creator>Yu, Shaohui</creator><creator>Liu, Jianguo</creator><creator>Liu, Wenqing</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201508</creationdate><title>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</title><author>Yang, Ruifang ; Zhao, Nanjing ; Xiao, Xue ; Yu, Shaohui ; Liu, Jianguo ; Liu, Wenqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4343-bb3828c0d17e8e83d61e6108124f2dcea6f4ce4a56af953e4d49aff05f845513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>component recognition</topic><topic>Factorization</topic><topic>Fluorescence</topic><topic>Lakes</topic><topic>Matrix</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Rivers</topic><topic>sparse non-negative matrix factorization</topic><topic>Spectra</topic><topic>Three dimensional</topic><topic>three-dimensional fluorescence spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ruifang</creatorcontrib><creatorcontrib>Zhao, Nanjing</creatorcontrib><creatorcontrib>Xiao, Xue</creatorcontrib><creatorcontrib>Yu, Shaohui</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ruifang</au><au>Zhao, Nanjing</au><au>Xiao, Xue</au><au>Yu, Shaohui</au><au>Liu, Jianguo</au><au>Liu, Wenqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2015-08</date><risdate>2015</risdate><volume>29</volume><issue>8</issue><spage>442</spage><epage>447</epage><pages>442-447</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley &amp; Sons, Ltd. Sparse non‐negative matrix factorization on right side factor (SNMF/R) was used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. Results illustrate that SNMF/R can extract source spectra more accurately with similarity coefficients between the recognized three‐dimensional spectra and the reference spectra of all above 0.80 and recognition rate higher than that of PARAFAC and NMF algorithms.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2723</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2015-08, Vol.29 (8), p.442-447
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_miscellaneous_1730120677
source Access via Wiley Online Library
subjects Algorithms
component recognition
Factorization
Fluorescence
Lakes
Matrix
Polycyclic aromatic hydrocarbons
Rivers
sparse non-negative matrix factorization
Spectra
Three dimensional
three-dimensional fluorescence spectra
title Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20separation%20of%20fluorescence%20spectra%20using%20sparse%20non-negative%20matrix%20factorization%20on%20right%20hand%20factor&rft.jtitle=Journal%20of%20chemometrics&rft.au=Yang,%20Ruifang&rft.date=2015-08&rft.volume=29&rft.issue=8&rft.spage=442&rft.epage=447&rft.pages=442-447&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2723&rft_dat=%3Cproquest_cross%3E3791568411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708000707&rft_id=info:pmid/&rfr_iscdi=true