Optimal antenna topologies for spatial gradient detection in differential GNSS

This paper describes new methods to determine optimal reference antenna topologies for detection of spatial gradients in differential Global Navigation Satellite Systems (GNSS). Such gradients can be caused by ionospheric fronts and orbit ephemeris faults, and if undetected, represent major threats...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 2015-07, Vol.50 (7), p.728-743
Hauptverfasser: Jing, Jing, Khanafseh, Samer, Langel, Steven, Chan, Fang-Cheng, Pervan, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue 7
container_start_page 728
container_title Radio science
container_volume 50
creator Jing, Jing
Khanafseh, Samer
Langel, Steven
Chan, Fang-Cheng
Pervan, Boris
description This paper describes new methods to determine optimal reference antenna topologies for detection of spatial gradients in differential Global Navigation Satellite Systems (GNSS). Such gradients can be caused by ionospheric fronts and orbit ephemeris faults, and if undetected, represent major threats to aircraft navigation integrity. Differential carrier phase measurements between ground antennas are highly sensitive to spatial gradients. Therefore, monitors using spatially separated ground antennas have recently attracted great interest. However, they cannot detect gradients of all sizes and directions due to the presence of integer ambiguities. These ambiguities cannot be resolved because the gradient magnitude is unknown a priori. Furthermore, the performance of such monitors is highly dependent on the spatial distribution of reference antennas. In this work, we introduce new methods to find optimized antenna topologies for spatial gradient detection. Key Points Investigate antenna topology optimization for ionospheric gradient monitoring Determine optimal antenna topologies for detection of spatial gradients
doi_str_mv 10.1002/2014RS005646
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730118705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730118705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4473-1784f57f7b6c7571c477468c338749a7dbd32b1f2b8c808a9861b0b9838425ec3</originalsourceid><addsrcrecordid>eNp90E9LHDEYBvBQKrhVb36AAS89dOybP5NkjsXq2iK7smPp3kImk5HoOBmTLLrf3siWIh48vZD394SXB6FjDKcYgHwngNmqAag445_QDNeMlaKu15_RDIDJknNg--hLjHeQZVYztFhOyT3oodBjsuOoi-QnP_hbZ2PR-1DESSeX17dBd86OqehssiY5PxZuLDrX9zbk51cyXzTNIdrr9RDt0b95gP5cnN-cXZZXy_mvsx9XpWFM0BILyfpK9KLlRlQCGyYE49JQKgWrtejajpIW96SVRoLUteS4hbaWVDJSWUMP0Nfdv1Pwjxsbk3pw0dhh0KP1m6iwoICxFFBlevKO3vlNGPN1WUE-h2PMs_q2Uyb4GIPt1RRyL2GrMKjXctXbcjMnO_7kBrv90KrVz4YA4TSHyl3IxWSf_4d0uFdcUFGpv4u5ws319ZpwrH7TF8k0iAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704476116</pqid></control><display><type>article</type><title>Optimal antenna topologies for spatial gradient detection in differential GNSS</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Jing, Jing ; Khanafseh, Samer ; Langel, Steven ; Chan, Fang-Cheng ; Pervan, Boris</creator><creatorcontrib>Jing, Jing ; Khanafseh, Samer ; Langel, Steven ; Chan, Fang-Cheng ; Pervan, Boris</creatorcontrib><description>This paper describes new methods to determine optimal reference antenna topologies for detection of spatial gradients in differential Global Navigation Satellite Systems (GNSS). Such gradients can be caused by ionospheric fronts and orbit ephemeris faults, and if undetected, represent major threats to aircraft navigation integrity. Differential carrier phase measurements between ground antennas are highly sensitive to spatial gradients. Therefore, monitors using spatially separated ground antennas have recently attracted great interest. However, they cannot detect gradients of all sizes and directions due to the presence of integer ambiguities. These ambiguities cannot be resolved because the gradient magnitude is unknown a priori. Furthermore, the performance of such monitors is highly dependent on the spatial distribution of reference antennas. In this work, we introduce new methods to find optimized antenna topologies for spatial gradient detection. Key Points Investigate antenna topology optimization for ionospheric gradient monitoring Determine optimal antenna topologies for detection of spatial gradients</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1002/2014RS005646</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Ambiguity ; antenna ; antenna topology ; Antennas ; carrier phase ; GBAS ; GNSS ; Grounds ; Ionosphere ; ionospheric gradient ; Ionospherics ; Monitors ; Navigation systems ; Optimization ; Topology</subject><ispartof>Radio science, 2015-07, Vol.50 (7), p.728-743</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4473-1784f57f7b6c7571c477468c338749a7dbd32b1f2b8c808a9861b0b9838425ec3</citedby><cites>FETCH-LOGICAL-c4473-1784f57f7b6c7571c477468c338749a7dbd32b1f2b8c808a9861b0b9838425ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014RS005646$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014RS005646$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Jing, Jing</creatorcontrib><creatorcontrib>Khanafseh, Samer</creatorcontrib><creatorcontrib>Langel, Steven</creatorcontrib><creatorcontrib>Chan, Fang-Cheng</creatorcontrib><creatorcontrib>Pervan, Boris</creatorcontrib><title>Optimal antenna topologies for spatial gradient detection in differential GNSS</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>This paper describes new methods to determine optimal reference antenna topologies for detection of spatial gradients in differential Global Navigation Satellite Systems (GNSS). Such gradients can be caused by ionospheric fronts and orbit ephemeris faults, and if undetected, represent major threats to aircraft navigation integrity. Differential carrier phase measurements between ground antennas are highly sensitive to spatial gradients. Therefore, monitors using spatially separated ground antennas have recently attracted great interest. However, they cannot detect gradients of all sizes and directions due to the presence of integer ambiguities. These ambiguities cannot be resolved because the gradient magnitude is unknown a priori. Furthermore, the performance of such monitors is highly dependent on the spatial distribution of reference antennas. In this work, we introduce new methods to find optimized antenna topologies for spatial gradient detection. Key Points Investigate antenna topology optimization for ionospheric gradient monitoring Determine optimal antenna topologies for detection of spatial gradients</description><subject>Ambiguity</subject><subject>antenna</subject><subject>antenna topology</subject><subject>Antennas</subject><subject>carrier phase</subject><subject>GBAS</subject><subject>GNSS</subject><subject>Grounds</subject><subject>Ionosphere</subject><subject>ionospheric gradient</subject><subject>Ionospherics</subject><subject>Monitors</subject><subject>Navigation systems</subject><subject>Optimization</subject><subject>Topology</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90E9LHDEYBvBQKrhVb36AAS89dOybP5NkjsXq2iK7smPp3kImk5HoOBmTLLrf3siWIh48vZD394SXB6FjDKcYgHwngNmqAag445_QDNeMlaKu15_RDIDJknNg--hLjHeQZVYztFhOyT3oodBjsuOoi-QnP_hbZ2PR-1DESSeX17dBd86OqehssiY5PxZuLDrX9zbk51cyXzTNIdrr9RDt0b95gP5cnN-cXZZXy_mvsx9XpWFM0BILyfpK9KLlRlQCGyYE49JQKgWrtejajpIW96SVRoLUteS4hbaWVDJSWUMP0Nfdv1Pwjxsbk3pw0dhh0KP1m6iwoICxFFBlevKO3vlNGPN1WUE-h2PMs_q2Uyb4GIPt1RRyL2GrMKjXctXbcjMnO_7kBrv90KrVz4YA4TSHyl3IxWSf_4d0uFdcUFGpv4u5ws319ZpwrH7TF8k0iAU</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Jing, Jing</creator><creator>Khanafseh, Samer</creator><creator>Langel, Steven</creator><creator>Chan, Fang-Cheng</creator><creator>Pervan, Boris</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201507</creationdate><title>Optimal antenna topologies for spatial gradient detection in differential GNSS</title><author>Jing, Jing ; Khanafseh, Samer ; Langel, Steven ; Chan, Fang-Cheng ; Pervan, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4473-1784f57f7b6c7571c477468c338749a7dbd32b1f2b8c808a9861b0b9838425ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ambiguity</topic><topic>antenna</topic><topic>antenna topology</topic><topic>Antennas</topic><topic>carrier phase</topic><topic>GBAS</topic><topic>GNSS</topic><topic>Grounds</topic><topic>Ionosphere</topic><topic>ionospheric gradient</topic><topic>Ionospherics</topic><topic>Monitors</topic><topic>Navigation systems</topic><topic>Optimization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Jing</creatorcontrib><creatorcontrib>Khanafseh, Samer</creatorcontrib><creatorcontrib>Langel, Steven</creatorcontrib><creatorcontrib>Chan, Fang-Cheng</creatorcontrib><creatorcontrib>Pervan, Boris</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Jing</au><au>Khanafseh, Samer</au><au>Langel, Steven</au><au>Chan, Fang-Cheng</au><au>Pervan, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal antenna topologies for spatial gradient detection in differential GNSS</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>2015-07</date><risdate>2015</risdate><volume>50</volume><issue>7</issue><spage>728</spage><epage>743</epage><pages>728-743</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>This paper describes new methods to determine optimal reference antenna topologies for detection of spatial gradients in differential Global Navigation Satellite Systems (GNSS). Such gradients can be caused by ionospheric fronts and orbit ephemeris faults, and if undetected, represent major threats to aircraft navigation integrity. Differential carrier phase measurements between ground antennas are highly sensitive to spatial gradients. Therefore, monitors using spatially separated ground antennas have recently attracted great interest. However, they cannot detect gradients of all sizes and directions due to the presence of integer ambiguities. These ambiguities cannot be resolved because the gradient magnitude is unknown a priori. Furthermore, the performance of such monitors is highly dependent on the spatial distribution of reference antennas. In this work, we introduce new methods to find optimized antenna topologies for spatial gradient detection. Key Points Investigate antenna topology optimization for ionospheric gradient monitoring Determine optimal antenna topologies for detection of spatial gradients</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014RS005646</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2015-07, Vol.50 (7), p.728-743
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_miscellaneous_1730118705
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Ambiguity
antenna
antenna topology
Antennas
carrier phase
GBAS
GNSS
Grounds
Ionosphere
ionospheric gradient
Ionospherics
Monitors
Navigation systems
Optimization
Topology
title Optimal antenna topologies for spatial gradient detection in differential GNSS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20antenna%20topologies%20for%20spatial%20gradient%20detection%20in%20differential%20GNSS&rft.jtitle=Radio%20science&rft.au=Jing,%20Jing&rft.date=2015-07&rft.volume=50&rft.issue=7&rft.spage=728&rft.epage=743&rft.pages=728-743&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1002/2014RS005646&rft_dat=%3Cproquest_cross%3E1730118705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704476116&rft_id=info:pmid/&rfr_iscdi=true