Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint

Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2015-10, Vol.12 (10), p.2150-2154
Hauptverfasser: Gan, Shuwei, Wang, Shoudong, Chen, Yangkang, Zhang, Yizhuo, Jin, Zhaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2154
container_issue 10
container_start_page 2150
container_title IEEE geoscience and remote sensing letters
container_volume 12
creator Gan, Shuwei
Wang, Shoudong
Chen, Yangkang
Zhang, Yizhuo
Jin, Zhaoyu
description Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.
doi_str_mv 10.1109/LGRS.2015.2453119
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730118599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7169544</ieee_id><sourcerecordid>3850454531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</originalsourceid><addsrcrecordid>eNpd0EFLwzAUB_AiCs7pBxAvBS9eOvPapkmPsrk5KAhuQ_ESsvZVM9pkJhmyb2_rhgdP7x1-_8fjHwTXQEYAJL8vZi-LUUyAjuKUJgD5STAASnlEKIPTfk9pRHP-dh5cOLchJE45Z4PgfYKyUdJhFS5QuVaV4UR6Gc61R7s1jfTK6HDllP74BQ36cGmldrWxbfiq_GdYmO9oavFrh7rch2OjnbdSaX8ZnNWycXh1nMNgNX1cjp-i4nk2Hz8UkaQJ8xFmCCUHlvI1sKqCmNcEaZavecVJSmIGkkCaJ0B4ltTrmsqsZjGvJCEMgFfJMLg73N1a0z3hvGiVK7FppEazcwJYQjpI87yjt__oxuys7r7rVMxJEnNKOwUHVVrjnMVabK1qpd0LIKJvW_Rti75tcWy7y9wcMgoR_zyDLKdpmvwA3Lh6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728032855</pqid></control><display><type>article</type><title>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</title><source>IEEE Xplore</source><creator>Gan, Shuwei ; Wang, Shoudong ; Chen, Yangkang ; Zhang, Yizhuo ; Jin, Zhaoyu</creator><creatorcontrib>Gan, Shuwei ; Wang, Shoudong ; Chen, Yangkang ; Zhang, Yizhuo ; Jin, Zhaoyu</creatorcontrib><description>Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2453119</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dipping ; Estimation ; Filtering ; Geophysics ; Interpolation ; Iterative methods ; Local slope ; low-frequency constrained inversion ; Oil exploration ; Optimization ; Petroleum industry ; Projection ; seislet transform ; seismic data interpolation ; Signal to noise ratio ; Slopes ; Sparsity ; sparsity comparison ; Transforms ; Wavelet transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-10, Vol.12 (10), p.2150-2154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</citedby><cites>FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7169544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7169544$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gan, Shuwei</creatorcontrib><creatorcontrib>Wang, Shoudong</creatorcontrib><creatorcontrib>Chen, Yangkang</creatorcontrib><creatorcontrib>Zhang, Yizhuo</creatorcontrib><creatorcontrib>Jin, Zhaoyu</creatorcontrib><title>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.</description><subject>Dipping</subject><subject>Estimation</subject><subject>Filtering</subject><subject>Geophysics</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Local slope</subject><subject>low-frequency constrained inversion</subject><subject>Oil exploration</subject><subject>Optimization</subject><subject>Petroleum industry</subject><subject>Projection</subject><subject>seislet transform</subject><subject>seismic data interpolation</subject><subject>Signal to noise ratio</subject><subject>Slopes</subject><subject>Sparsity</subject><subject>sparsity comparison</subject><subject>Transforms</subject><subject>Wavelet transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EFLwzAUB_AiCs7pBxAvBS9eOvPapkmPsrk5KAhuQ_ESsvZVM9pkJhmyb2_rhgdP7x1-_8fjHwTXQEYAJL8vZi-LUUyAjuKUJgD5STAASnlEKIPTfk9pRHP-dh5cOLchJE45Z4PgfYKyUdJhFS5QuVaV4UR6Gc61R7s1jfTK6HDllP74BQ36cGmldrWxbfiq_GdYmO9oavFrh7rch2OjnbdSaX8ZnNWycXh1nMNgNX1cjp-i4nk2Hz8UkaQJ8xFmCCUHlvI1sKqCmNcEaZavecVJSmIGkkCaJ0B4ltTrmsqsZjGvJCEMgFfJMLg73N1a0z3hvGiVK7FppEazcwJYQjpI87yjt__oxuys7r7rVMxJEnNKOwUHVVrjnMVabK1qpd0LIKJvW_Rti75tcWy7y9wcMgoR_zyDLKdpmvwA3Lh6WA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Gan, Shuwei</creator><creator>Wang, Shoudong</creator><creator>Chen, Yangkang</creator><creator>Zhang, Yizhuo</creator><creator>Jin, Zhaoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20151001</creationdate><title>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</title><author>Gan, Shuwei ; Wang, Shoudong ; Chen, Yangkang ; Zhang, Yizhuo ; Jin, Zhaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dipping</topic><topic>Estimation</topic><topic>Filtering</topic><topic>Geophysics</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Local slope</topic><topic>low-frequency constrained inversion</topic><topic>Oil exploration</topic><topic>Optimization</topic><topic>Petroleum industry</topic><topic>Projection</topic><topic>seislet transform</topic><topic>seismic data interpolation</topic><topic>Signal to noise ratio</topic><topic>Slopes</topic><topic>Sparsity</topic><topic>sparsity comparison</topic><topic>Transforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Shuwei</creatorcontrib><creatorcontrib>Wang, Shoudong</creatorcontrib><creatorcontrib>Chen, Yangkang</creatorcontrib><creatorcontrib>Zhang, Yizhuo</creatorcontrib><creatorcontrib>Jin, Zhaoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gan, Shuwei</au><au>Wang, Shoudong</au><au>Chen, Yangkang</au><au>Zhang, Yizhuo</au><au>Jin, Zhaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>12</volume><issue>10</issue><spage>2150</spage><epage>2154</epage><pages>2150-2154</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2453119</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2015-10, Vol.12 (10), p.2150-2154
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1730118599
source IEEE Xplore
subjects Dipping
Estimation
Filtering
Geophysics
Interpolation
Iterative methods
Local slope
low-frequency constrained inversion
Oil exploration
Optimization
Petroleum industry
Projection
seislet transform
seismic data interpolation
Signal to noise ratio
Slopes
Sparsity
sparsity comparison
Transforms
Wavelet transforms
title Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dealiased%20Seismic%20Data%20Interpolation%20Using%20Seislet%20Transform%20With%20Low-Frequency%20Constraint&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gan,%20Shuwei&rft.date=2015-10-01&rft.volume=12&rft.issue=10&rft.spage=2150&rft.epage=2154&rft.pages=2150-2154&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2453119&rft_dat=%3Cproquest_RIE%3E3850454531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728032855&rft_id=info:pmid/&rft_ieee_id=7169544&rfr_iscdi=true