Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint
Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2015-10, Vol.12 (10), p.2150-2154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2154 |
---|---|
container_issue | 10 |
container_start_page | 2150 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 12 |
creator | Gan, Shuwei Wang, Shoudong Chen, Yangkang Zhang, Yizhuo Jin, Zhaoyu |
description | Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches. |
doi_str_mv | 10.1109/LGRS.2015.2453119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730118599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7169544</ieee_id><sourcerecordid>3850454531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</originalsourceid><addsrcrecordid>eNpd0EFLwzAUB_AiCs7pBxAvBS9eOvPapkmPsrk5KAhuQ_ESsvZVM9pkJhmyb2_rhgdP7x1-_8fjHwTXQEYAJL8vZi-LUUyAjuKUJgD5STAASnlEKIPTfk9pRHP-dh5cOLchJE45Z4PgfYKyUdJhFS5QuVaV4UR6Gc61R7s1jfTK6HDllP74BQ36cGmldrWxbfiq_GdYmO9oavFrh7rch2OjnbdSaX8ZnNWycXh1nMNgNX1cjp-i4nk2Hz8UkaQJ8xFmCCUHlvI1sKqCmNcEaZavecVJSmIGkkCaJ0B4ltTrmsqsZjGvJCEMgFfJMLg73N1a0z3hvGiVK7FppEazcwJYQjpI87yjt__oxuys7r7rVMxJEnNKOwUHVVrjnMVabK1qpd0LIKJvW_Rti75tcWy7y9wcMgoR_zyDLKdpmvwA3Lh6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728032855</pqid></control><display><type>article</type><title>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</title><source>IEEE Xplore</source><creator>Gan, Shuwei ; Wang, Shoudong ; Chen, Yangkang ; Zhang, Yizhuo ; Jin, Zhaoyu</creator><creatorcontrib>Gan, Shuwei ; Wang, Shoudong ; Chen, Yangkang ; Zhang, Yizhuo ; Jin, Zhaoyu</creatorcontrib><description>Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2453119</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dipping ; Estimation ; Filtering ; Geophysics ; Interpolation ; Iterative methods ; Local slope ; low-frequency constrained inversion ; Oil exploration ; Optimization ; Petroleum industry ; Projection ; seislet transform ; seismic data interpolation ; Signal to noise ratio ; Slopes ; Sparsity ; sparsity comparison ; Transforms ; Wavelet transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-10, Vol.12 (10), p.2150-2154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</citedby><cites>FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7169544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7169544$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gan, Shuwei</creatorcontrib><creatorcontrib>Wang, Shoudong</creatorcontrib><creatorcontrib>Chen, Yangkang</creatorcontrib><creatorcontrib>Zhang, Yizhuo</creatorcontrib><creatorcontrib>Jin, Zhaoyu</creatorcontrib><title>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.</description><subject>Dipping</subject><subject>Estimation</subject><subject>Filtering</subject><subject>Geophysics</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Local slope</subject><subject>low-frequency constrained inversion</subject><subject>Oil exploration</subject><subject>Optimization</subject><subject>Petroleum industry</subject><subject>Projection</subject><subject>seislet transform</subject><subject>seismic data interpolation</subject><subject>Signal to noise ratio</subject><subject>Slopes</subject><subject>Sparsity</subject><subject>sparsity comparison</subject><subject>Transforms</subject><subject>Wavelet transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EFLwzAUB_AiCs7pBxAvBS9eOvPapkmPsrk5KAhuQ_ESsvZVM9pkJhmyb2_rhgdP7x1-_8fjHwTXQEYAJL8vZi-LUUyAjuKUJgD5STAASnlEKIPTfk9pRHP-dh5cOLchJE45Z4PgfYKyUdJhFS5QuVaV4UR6Gc61R7s1jfTK6HDllP74BQ36cGmldrWxbfiq_GdYmO9oavFrh7rch2OjnbdSaX8ZnNWycXh1nMNgNX1cjp-i4nk2Hz8UkaQJ8xFmCCUHlvI1sKqCmNcEaZavecVJSmIGkkCaJ0B4ltTrmsqsZjGvJCEMgFfJMLg73N1a0z3hvGiVK7FppEazcwJYQjpI87yjt__oxuys7r7rVMxJEnNKOwUHVVrjnMVabK1qpd0LIKJvW_Rti75tcWy7y9wcMgoR_zyDLKdpmvwA3Lh6WA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Gan, Shuwei</creator><creator>Wang, Shoudong</creator><creator>Chen, Yangkang</creator><creator>Zhang, Yizhuo</creator><creator>Jin, Zhaoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20151001</creationdate><title>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</title><author>Gan, Shuwei ; Wang, Shoudong ; Chen, Yangkang ; Zhang, Yizhuo ; Jin, Zhaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-e6e1c81748b17dd128f0e569b8d8040271a0149310863fbf5a6f728da007118d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dipping</topic><topic>Estimation</topic><topic>Filtering</topic><topic>Geophysics</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Local slope</topic><topic>low-frequency constrained inversion</topic><topic>Oil exploration</topic><topic>Optimization</topic><topic>Petroleum industry</topic><topic>Projection</topic><topic>seislet transform</topic><topic>seismic data interpolation</topic><topic>Signal to noise ratio</topic><topic>Slopes</topic><topic>Sparsity</topic><topic>sparsity comparison</topic><topic>Transforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Shuwei</creatorcontrib><creatorcontrib>Wang, Shoudong</creatorcontrib><creatorcontrib>Chen, Yangkang</creatorcontrib><creatorcontrib>Zhang, Yizhuo</creatorcontrib><creatorcontrib>Jin, Zhaoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gan, Shuwei</au><au>Wang, Shoudong</au><au>Chen, Yangkang</au><au>Zhang, Yizhuo</au><au>Jin, Zhaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>12</volume><issue>10</issue><spage>2150</spage><epage>2154</epage><pages>2150-2154</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Interpolating regularly missing traces in seismic data is thought to be much harder than interpolating irregularly missing seismic traces, because many sparsity-based approaches cannot be used due to the strong aliasing noise in the sparse domain. We propose to use the seislet transform to perform a sparsity-based approach to interpolate highly undersampled seismic data based on the classic projection onto convex sets (POCS) framework. Many numerical tests show that the local slope is the main factor that will affect the sparsity and antialiasing ability of seislet transform. By low-pass filtering the undersampled seismic data with a very low bound frequency, we can get a precise dip estimation, which will make the seislet transform capable for interpolating the aliased seismic data. In order to prepare the optimum local slope during iterations, we update the slope field every several iterations. We also use a percentile thresholding approach to better control the reconstruction performance. Both synthetic and field examples show better performance using the proposed approach than the traditional prediction based and the F-K-based POCS approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2453119</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2015-10, Vol.12 (10), p.2150-2154 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730118599 |
source | IEEE Xplore |
subjects | Dipping Estimation Filtering Geophysics Interpolation Iterative methods Local slope low-frequency constrained inversion Oil exploration Optimization Petroleum industry Projection seislet transform seismic data interpolation Signal to noise ratio Slopes Sparsity sparsity comparison Transforms Wavelet transforms |
title | Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dealiased%20Seismic%20Data%20Interpolation%20Using%20Seislet%20Transform%20With%20Low-Frequency%20Constraint&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gan,%20Shuwei&rft.date=2015-10-01&rft.volume=12&rft.issue=10&rft.spage=2150&rft.epage=2154&rft.pages=2150-2154&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2453119&rft_dat=%3Cproquest_RIE%3E3850454531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728032855&rft_id=info:pmid/&rft_ieee_id=7169544&rfr_iscdi=true |